Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):441–445.

Identification of a DNA-binding domain and an active-site residue of pseudorabies virus DNase.

T Y Ho 1, S L Wu 1, C H Hsiang 1, T J Chang 1, C Y Hsiang 1
PMCID: PMC1220871  PMID: 10677364

Abstract

The pseudorabies virus (PRV) DNase gene has an open reading frame of 1476 nt, capable of coding a 492-residue protein. A previous study showed that PRV DNase is an alkaline exonuclease and endonuclease, exhibiting an Escherichia coli RecBCD-like catalytic function. To analyse its catalytic mechanism further, we constructed a set of clones truncated at the N-terminus or C-terminus of PRV DNase. The deleted mutants were expressed in E. coli with the use of pET expression vectors, then purified to homogeneity. Our results indicate that (1) the region spanning residues 274-492 exhibits a DNA-binding ability 7-fold that of the intact DNase; (2) the N-terminal 62 residues and the C-terminal 39 residues have important roles in 3'-exonuclease activity, and (3) residues 63-453 are responsible for 5'- and 3'-exonuclease activities. Further chemical modification of PRV DNase revealed that the inactivation of DNase by diethyl pyrocarbonate, which was reversible on treatment with hydroxylamine, seemed to be attributable solely to the modification of histidyl residues. Because the herpesviral DNases contained only one well-conserved histidine residue, site-directed mutagenesis was performed to replace His(371) with Ala. The mutant lost most of its nuclease activity; however, it still exhibited a wild-type level of DNA-binding ability. In summary, these results indicate that PRV DNase contains an independent DNA-binding domain and that His(371) is the active-site residue that has an essential role in PRV DNase activity.

Full Text

The Full Text of this article is available as a PDF (153.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bronstein J. C., Weller S. K., Weber P. C. The product of the UL12.5 gene of herpes simplex virus type 1 is a capsid-associated nuclease. J Virol. 1997 Apr;71(4):3039–3047. doi: 10.1128/jvi.71.4.3039-3047.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
  3. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., 3rd, Kouzarides T., Martignetti J. A. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990;154:125–169. doi: 10.1007/978-3-642-74980-3_6. [DOI] [PubMed] [Google Scholar]
  4. Classification and nomenclature of viruses. Fourth report of the International Committee on Taxonomy of Viruses. Intervirology. 1982;17(1-3):1–199. doi: 10.1159/000149278. [DOI] [PubMed] [Google Scholar]
  5. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  6. Dean H. J., Cheung A. K. A 3' coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, and UL3 gene homologs and a unique UL3.5 open reading frame. J Virol. 1993 Oct;67(10):5955–5961. doi: 10.1128/jvi.67.10.5955-5961.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dominici P., Tancini B., Borri Voltattorni C. Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate. Evidence for an essential histidyl residue. J Biol Chem. 1985 Sep 5;260(19):10583–10589. [PubMed] [Google Scholar]
  8. Gite S., Reddy G., Shankar V. Active-site characterization of S1 nuclease. II. Involvement of histidine in catalysis. Biochem J. 1992 Dec 1;288(Pt 2):571–575. doi: 10.1042/bj2880571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein J. N., Weller S. K. In vitro processing of herpes simplex virus type 1 DNA replication intermediates by the viral alkaline nuclease, UL12. J Virol. 1998 Nov;72(11):8772–8781. doi: 10.1128/jvi.72.11.8772-8781.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldstein J. N., Weller S. K. The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology. 1998 May 10;244(2):442–457. doi: 10.1006/viro.1998.9129. [DOI] [PubMed] [Google Scholar]
  11. Henderson J. O., Ball-Goodrich L. J., Parris D. S. Structure-function analysis of the herpes simplex virus type 1 UL12 gene: correlation of deoxyribonuclease activity in vitro with replication function. Virology. 1998 Mar 30;243(1):247–259. doi: 10.1006/viro.1998.9054. [DOI] [PubMed] [Google Scholar]
  12. Hsiang C. Y., Ho T. Y., Chang T. J. Identification of a pseudorabies virus UL12 (deoxyribonuclease) gene. Gene. 1996 Oct 24;177(1-2):109–113. doi: 10.1016/0378-1119(96)00285-5. [DOI] [PubMed] [Google Scholar]
  13. Hsiang C. Y., Ho T. Y., Hsiang C. H., Chang T. J. Recombinant pseudorabies virus DNase exhibits a RecBCD-like catalytic function. Biochem J. 1998 Feb 15;330(Pt 1):55–59. doi: 10.1042/bj3300055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Irie M. Studies on the photooxidation of Ribonuclease T1. J Biochem. 1970 Jul;68(1):69–79. [PubMed] [Google Scholar]
  15. Jöns A., Mettenleiter T. C. Identification and characterization of pseudorabies virus dUTPase. J Virol. 1996 Feb;70(2):1242–1245. doi: 10.1128/jvi.70.2.1242-1245.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaliman A. V., Boldogköi Z., Fodor I. Large and small subunits of the Aujeszky's disease virus ribonucleotide reductase: nucleotide sequence and putative structure. Biochim Biophys Acta. 1994 Sep 13;1219(1):151–156. doi: 10.1016/0167-4781(94)90259-3. [DOI] [PubMed] [Google Scholar]
  17. Kawata Y., Sakiyama F., Hayashi F., Kyogoku Y. Identification of two essential histidine residues of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem. 1990 Jan 12;187(1):255–262. doi: 10.1111/j.1432-1033.1990.tb15303.x. [DOI] [PubMed] [Google Scholar]
  18. Kehm E., Göksu M. A., Knopf C. W. Expression analysis of recombinant herpes simplex virus type 1 DNase. Virus Genes. 1998;17(2):129–138. doi: 10.1023/a:1008012606497. [DOI] [PubMed] [Google Scholar]
  19. Kehm E., Göksu M., Bayer S., Knopf C. W. Herpes simplex virus type 1 DNase: functional analysis of the enzyme expressed by recombinant baculovirus. Intervirology. 1998;41(2-3):110–119. doi: 10.1159/000024922. [DOI] [PubMed] [Google Scholar]
  20. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lahm A., Suck D. DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. J Mol Biol. 1991 Dec 5;222(3):645–667. doi: 10.1016/0022-2836(91)90502-w. [DOI] [PubMed] [Google Scholar]
  22. Lin S. F., Lin S. W., Hsu T. Y., Liu M. Y., Chen J. Y., Yang C. S. Functional analysis of the amino terminus of Epstein-Barr virus deoxyribonuclease. Virology. 1994 Feb 15;199(1):223–227. doi: 10.1006/viro.1994.1115. [DOI] [PubMed] [Google Scholar]
  23. Martinez R., Sarisky R. T., Weber P. C., Weller S. K. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol. 1996 Apr;70(4):2075–2085. doi: 10.1128/jvi.70.4.2075-2085.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 1988 Jul;69(Pt 7):1531–1574. doi: 10.1099/0022-1317-69-7-1531. [DOI] [PubMed] [Google Scholar]
  25. Melchior W. B., Jr, Fahrney D. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with alpha-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4. Biochemistry. 1970 Jan 20;9(2):251–258. doi: 10.1021/bi00804a010. [DOI] [PubMed] [Google Scholar]
  26. Mettenleiter T. C. Pseudorabies (Aujeszky's disease) virus: state of the art. August 1993. Acta Vet Hung. 1994;42(2-3):153–177. [PubMed] [Google Scholar]
  27. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  28. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
  29. Ollis D. L., Kline C., Steitz T. A. Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. 1985 Feb 28-Mar 6Nature. 313(6005):818–819. doi: 10.1038/313818a0. [DOI] [PubMed] [Google Scholar]
  30. Price P. A., Liu T. Y., Stein W. H., Moore S. Properties of chromatographically purified bovine pancreatic deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):917–923. [PubMed] [Google Scholar]
  31. Prieto J., Martín Hernández A. M., Tabarés E. Loss of pseudorabies virus thymidine kinase activity due to a single base mutation and amino acid substitution. J Gen Virol. 1991 Jun;72(Pt 6):1435–1439. doi: 10.1099/0022-1317-72-6-1435. [DOI] [PubMed] [Google Scholar]
  32. Shao L., Rapp L. M., Weller S. K. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology. 1993 Sep;196(1):146–162. doi: 10.1006/viro.1993.1463. [DOI] [PubMed] [Google Scholar]
  33. Weller S. K., Seghatoleslami M. R., Shao L., Rowse D., Carmichael E. P. The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J Gen Virol. 1990 Dec;71(Pt 12):2941–2952. doi: 10.1099/0022-1317-71-12-2941. [DOI] [PubMed] [Google Scholar]
  34. Wlodawer A., Sjölin L. Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0-A resolution. Biochemistry. 1983 May 24;22(11):2720–2728. doi: 10.1021/bi00280a021. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES