Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):475–482.

Cloning and functional characterization of the 5'-flanking region of human methionine adenosyltransferase 1A gene.

Z Zeng 1, Z Z Huang 1, C Chen 1, H Yang 1, Z Mao 1, S C Lu 1
PMCID: PMC1220876  PMID: 10677369

Abstract

Methionine adenosyltransferase (MAT) is an essential cellular enzyme which catalyses the formation of S-adenosylmethionine, the principal methyl donor and precursor for polyamines. In mammals, two different genes, MAT1A and MAT2A, encode for liver-specific and non-liver-specific MAT respectively. We previously described a switch in the MAT expression from MAT1A to MAT2A in human liver cancer, which offered the cancerous cell a growth advantage. Loss of MAT1A expression was due to lack of gene transcription. To study regulation of the MAT1A gene, we have cloned and characterized a 1.9 kb 5'-flanking region of the human MAT1A gene. One transcriptional start site, located 25 nt downstream from a consensus TATA box, was identified by primer extension and RNase protection assays. The promoter contains several consensus binding sites for CAAT enhancer binding protein (C/EBP) and hepatocyte-enriched nuclear factor (HNF), transcriptional factors important in liver-specific gene expression. The human MAT1A promoter was able to efficiently drive luciferase expression in Chang cells, a human liver cell line, but not in HeLa cells. Sequential deletion analysis of the promoter revealed two DNA regions upstream of the translational start site, -705 to -839 bp and -1111 to -1483 bp, which are involved in positive and negative gene regulation, respectively. Specific protein binding to these regions was confirmed by electrophoretic-mobility-shift and DNase I footprinting assays. Similar to the situation with the rat MAT1A, glucocorticoid treatment also increased human MAT1A expression and promoter activity in a dose- and time-dependent manner.

Full Text

The Full Text of this article is available as a PDF (320.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez L., Corrales F., Martín-Duce A., Mato J. M. Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J. 1993 Jul 15;293(Pt 2):481–486. doi: 10.1042/bj2930481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvarez L., Sánchez-Góngora E., Mingorance J., Pajares M. A., Mato J. M. Characterization of rat liver-specific methionine adenosyltransferase gene promoter. Role of distal upstream cis-acting elements in the regulation of the transcriptional activity. J Biol Chem. 1997 Sep 5;272(36):22875–22883. doi: 10.1074/jbc.272.36.22875. [DOI] [PubMed] [Google Scholar]
  3. Avila M. A., Carretero M. V., Rodriguez E. N., Mato J. M. Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Gastroenterology. 1998 Feb;114(2):364–371. doi: 10.1016/s0016-5085(98)70489-5. [DOI] [PubMed] [Google Scholar]
  4. Avila M. A., Mingorance J., Martínez-Chantar M. L., Casado M., Martin-Sanz P., Boscá L., Mato J. M. Regulation of rat liver S-adenosylmethionine synthetase during septic shock: role of nitric oxide. Hepatology. 1997 Feb;25(2):391–396. doi: 10.1002/hep.510250222. [DOI] [PubMed] [Google Scholar]
  5. Cai J., Huang Z. Z., Lu S. C. Differential regulation of gamma-glutamylcysteine synthetase heavy and light subunit gene expression. Biochem J. 1997 Aug 15;326(Pt 1):167–172. doi: 10.1042/bj3260167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cai J., Mao Z., Hwang J. J., Lu S. C. Differential expression of methionine adenosyltransferase genes influences the rate of growth of human hepatocellular carcinoma cells. Cancer Res. 1998 Apr 1;58(7):1444–1450. [PubMed] [Google Scholar]
  7. Cai J., Sun W. M., Hwang J. J., Stain S. C., Lu S. C. Changes in S-adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatology. 1996 Nov;24(5):1090–1097. doi: 10.1002/hep.510240519. [DOI] [PubMed] [Google Scholar]
  8. Chawla R. K., Jones D. P. Abnormal metabolism of S-adenosyl-L-methionine in hypoxic rat liver. Similarities to its abnormal metabolism in alcoholic cirrhosis. Biochim Biophys Acta. 1994 Jan 5;1199(1):45–51. doi: 10.1016/0304-4165(94)90094-9. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Diehl A. M., Johns D. C., Yang S., Lin H., Yin M., Matelis L. A., Lawrence J. H. Adenovirus-mediated transfer of CCAAT/enhancer-binding protein-alpha identifies a dominant antiproliferative role for this isoform in hepatocytes. J Biol Chem. 1996 Mar 29;271(13):7343–7350. doi: 10.1074/jbc.271.13.7343. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein J. D. Methionine metabolism in mammals. J Nutr Biochem. 1990 May;1(5):228–237. doi: 10.1016/0955-2863(90)90070-2. [DOI] [PubMed] [Google Scholar]
  12. Gil B., Casado M., Pajares M. A., Boscá L., Mato J. M., Martín-Sanz P., Alvarez L. Differential expression pattern of S-adenosylmethionine synthetase isoenzymes during rat liver development. Hepatology. 1996 Oct;24(4):876–881. doi: 10.1002/hep.510240420. [DOI] [PubMed] [Google Scholar]
  13. Gil B., Pajares M. A., Mato J. M., Alvarez L. Glucocorticoid regulation of hepatic S-adenosylmethionine synthetase gene expression. Endocrinology. 1997 Mar;138(3):1251–1258. doi: 10.1210/endo.138.3.4967. [DOI] [PubMed] [Google Scholar]
  14. Helin K. Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev. 1998 Feb;8(1):28–35. doi: 10.1016/s0959-437x(98)80058-0. [DOI] [PubMed] [Google Scholar]
  15. Horikawa S., Ozasa H., Ota K., Tsukada K. Immunohistochemical analysis of rat S-adenosylmethionine synthetase isozymes in developmental liver. FEBS Lett. 1993 Sep 20;330(3):307–311. doi: 10.1016/0014-5793(93)80894-z. [DOI] [PubMed] [Google Scholar]
  16. Horikawa S., Tsukada K. Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett. 1992 Nov 2;312(1):37–41. doi: 10.1016/0014-5793(92)81405-b. [DOI] [PubMed] [Google Scholar]
  17. Huang Z. Z., Mao Z., Cai J., Lu S. C. Changes in methionine adenosyltransferase during liver regeneration in the rat. Am J Physiol. 1998 Jul;275(1 Pt 1):G14–G21. doi: 10.1152/ajpgi.1998.275.1.G14. [DOI] [PubMed] [Google Scholar]
  18. Huang Z. Z., Mato J. M., Kanel G., Lu S. C. Differential effect of thioacetamide on hepatic methionine adenosyltransferase expression in the rat. Hepatology. 1999 May;29(5):1471–1478. doi: 10.1002/hep.510290525. [DOI] [PubMed] [Google Scholar]
  19. Kotb M., Mudd S. H., Mato J. M., Geller A. M., Kredich N. M., Chou J. Y., Cantoni G. L. Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends Genet. 1997 Feb;13(2):51–52. doi: 10.1016/s0168-9525(97)01013-5. [DOI] [PubMed] [Google Scholar]
  20. Lu S. C. Methionine adenosyltransferase and liver disease: it's all about SAM. Gastroenterology. 1998 Feb;114(2):403–407. doi: 10.1016/s0016-5085(98)70494-9. [DOI] [PubMed] [Google Scholar]
  21. Mao Z., Liu S., Cai J., Huang Z. Z., Lu S. C. Cloning and functional characterization of the 5'-flanking region of human methionine adenosyltransferase 2A gene. Biochem Biophys Res Commun. 1998 Jul 30;248(3):479–484. doi: 10.1006/bbrc.1998.8965. [DOI] [PubMed] [Google Scholar]
  22. Mato J. M., Alvarez L., Ortiz P., Pajares M. A. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther. 1997;73(3):265–280. doi: 10.1016/s0163-7258(96)00197-0. [DOI] [PubMed] [Google Scholar]
  23. Overdier D. G., Porcella A., Costa R. H. The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol. 1994 Apr;14(4):2755–2766. doi: 10.1128/mcb.14.4.2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pajares M. A., Durán C., Corrales F., Pliego M. M., Mato J. M. Modulation of rat liver S-adenosylmethionine synthetase activity by glutathione. J Biol Chem. 1992 Sep 5;267(25):17598–17605. [PubMed] [Google Scholar]
  25. Sakata S. F., Shelly L. L., Ruppert S., Schutz G., Chou J. Y. Cloning and expression of murine S-adenosylmethionine synthetase. J Biol Chem. 1993 Jul 5;268(19):13978–13986. [PubMed] [Google Scholar]
  26. Sánchez-Góngora E., Ruiz F., Mingorance J., An W., Corrales F. J., Mato J. M. Interaction of liver methionine adenosyltransferase with hydroxyl radical. FASEB J. 1997 Oct;11(12):1013–1019. doi: 10.1096/fasebj.11.12.9337154. [DOI] [PubMed] [Google Scholar]
  27. Ubagai T., Lei K. J., Huang S., Mudd S. H., Levy H. L., Chou J. Y. Molecular mechanisms of an inborn error of methionine pathway. Methionine adenosyltransferase deficiency. J Clin Invest. 1995 Oct;96(4):1943–1947. doi: 10.1172/JCI118240. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES