Abstract
In order to study the in vivo function of the phosphatidylinositol transfer protein beta (PI-TPbeta), mouse NIH3T3 fibroblasts were transfected with cDNA encoding mouse PI-TPbeta. Two stable cell lines were isolated (SPIbeta2 and SPIbeta8) in which the levels of PI-TPbeta were increased 16- and 11-fold respectively. The doubling time of the SPIbeta cells was about 1.7 times that of the wild-type (wt) cells. Because PI-TPbeta expresses transfer activity towards sphingomyelin (SM) in vitro, the SM metabolism of the overexpressors was investigated. By measuring the incorporation of [methyl-(3)H]choline chloride in SM and phosphatidylcholine (PtdCho), it was shown that the rate of de novo SM and PtdCho synthesis was similar in transfected and wt cells. We also determined the ability of the cells to resynthesize SM from ceramide produced in the plasma membrane by the action of bacterial sphingomyelinase (bSMase). In these experiments the cells were labelled to equilibrium (60 h) with [(3)H]choline. At relatively low bSMase concentrations (50 munits/ml), 50% of [(3)H]SM in wt NIH3T3 cells was degraded, whereas the levels of [(3)H]SM in SPIbeta cells appeared to be unaffected. Since the release of [(3)H]choline phosphate into the medium was comparable for both wt NIH3T3 and SPIbeta cells, these results strongly suggest that breakdown of SM in SPIbeta cells was masked by rapid resynthesis of SM from the ceramide formed. By increasing the bSMase concentrations to 200 munits/ml, a 50% decrease in the level of [(3)H]SM in SPIbeta cells was attained. During a recovery period of 6 h (in the absence of bSMase) the resynthesis of SM was found to be much more pronounced in these SPIbeta cells than in 50% [(3)H]SM-depleted wt NIH3T3 cells. After 6 h of recovery about 50% of the resynthesized SM in the SPIbeta cells was available for a second hydrolysis by bSMase. When monensin was present during the recovery period, the resynthesis of SM in bSMase-treated SPIbeta cells was not affected. However, under these conditions 100% of the resynthesized SM was available for hydrolysis. On the basis of these results we propose that, under conditions where ceramide is formed in the plasma membrane, PI-TPbeta plays an important role in restoring the steady-state levels of SM.
Full Text
The Full Text of this article is available as a PDF (174.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
- Allan D., Kallen K. J., Quinn P. Biosynthesis of sphingomyelin and its delivery to the surface of baby hamster kidney (BHK) cells. Biochem Soc Trans. 1993 May;21(2):240–244. doi: 10.1042/bst0210240. [DOI] [PubMed] [Google Scholar]
- Allen V., Swigart P., Cheung R., Cockcroft S., Katan M. Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J. 1997 Oct 15;327(Pt 2):545–552. doi: 10.1042/bj3270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrieu-Abadie N., Carpentier S., Salvayre R., Levade T. The tumour necrosis factor-sensitive pool of sphingomyelin is resynthesized in a distinct compartment of the plasma membrane. Biochem J. 1998 Jul 1;333(Pt 1):91–97. doi: 10.1042/bj3330091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrieu N., Salvayre R., Levade T. Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts. Biochem J. 1994 Oct 15;303(Pt 2):341–345. doi: 10.1042/bj3030341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bernert J. T., Jr, Ullman M. D. Biosynthesis of sphingomyelin from erythro-ceramides and phosphatidylcholine by a microsomal cholinephosphotransferase. Biochim Biophys Acta. 1981 Oct 23;666(1):99–109. doi: 10.1016/0005-2760(81)90095-3. [DOI] [PubMed] [Google Scholar]
- Bezombes C., Maestre N., Laurent G., Levade T., Bettaïeb A., Jaffrézou J. P. Restoration of TNF-alpha-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC833. FASEB J. 1998 Jan;12(1):101–109. doi: 10.1096/fasebj.12.1.101. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockcroft S., Ball A., Fensome A., Hara S., Jones D., Prosser S., Swigart P. Phosphatidylinositol transfer proteins: an essential requirement in inositol lipid signalling. Biochem Soc Trans. 1997 Nov;25(4):1125–1131. doi: 10.1042/bst0251125. [DOI] [PubMed] [Google Scholar]
- Cockcroft S. Phospholipid signaling in leukocytes. Curr Opin Hematol. 1996 Jan;3(1):48–54. doi: 10.1097/00062752-199603010-00008. [DOI] [PubMed] [Google Scholar]
- Cunningham E., Thomas G. M., Ball A., Hiles I., Cockcroft S. Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2. Curr Biol. 1995 Jul 1;5(7):775–783. doi: 10.1016/s0960-9822(95)00154-0. [DOI] [PubMed] [Google Scholar]
- De Vries K. J., Westerman J., Bastiaens P. I., Jovin T. M., Wirtz K. W., Snoek G. T. Fluorescently labeled phosphatidylinositol transfer protein isoforms (alpha and beta), microinjected into fetal bovine heart endothelial cells, are targeted to distinct intracellular sites. Exp Cell Res. 1996 Aug 25;227(1):33–39. doi: 10.1006/excr.1996.0246. [DOI] [PubMed] [Google Scholar]
- Dickeson S. K., Lim C. N., Schuyler G. T., Dalton T. P., Helmkamp G. M., Jr, Yarbrough L. R. Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein. J Biol Chem. 1989 Oct 5;264(28):16557–16564. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fensome A., Cunningham E., Prosser S., Tan S. K., Swigart P., Thomas G., Hsuan J., Cockcroft S. ARF and PITP restore GTP gamma S-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Curr Biol. 1996 Jun 1;6(6):730–738. doi: 10.1016/s0960-9822(09)00454-0. [DOI] [PubMed] [Google Scholar]
- Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
- Jeckel D., Karrenbauer A., Birk R., Schmidt R. R., Wieland F. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett. 1990 Feb 12;261(1):155–157. doi: 10.1016/0014-5793(90)80659-7. [DOI] [PubMed] [Google Scholar]
- Kallen K. J., Allan D., Whatmore J., Quinn P. Synthesis of surface sphingomyelin in the plasma membrane recycling pathway of BHK cells. Biochim Biophys Acta. 1994 Apr 20;1191(1):52–58. doi: 10.1016/0005-2736(94)90232-1. [DOI] [PubMed] [Google Scholar]
- Kallen K. J., Quinn P., Allan D. Monensin inhibits synthesis of plasma membrane sphingomyelin by blocking transport of ceramide through the Golgi: evidence for two sites of sphingomyelin synthesis in BHK cells. Biochim Biophys Acta. 1993 Feb 24;1166(2-3):305–308. doi: 10.1016/0005-2760(93)90111-l. [DOI] [PubMed] [Google Scholar]
- Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luberto C., Hannun Y. A. Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? J Biol Chem. 1998 Jun 5;273(23):14550–14559. doi: 10.1074/jbc.273.23.14550. [DOI] [PubMed] [Google Scholar]
- Marggraf W. D., Zertani R., Anderer F. A., Kanfer J. N. The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts. Biochim Biophys Acta. 1982 Mar 12;710(3):314–323. doi: 10.1016/0005-2760(82)90114-x. [DOI] [PubMed] [Google Scholar]
- Miro Obradors M. J., Sillence D., Howitt S., Allan D. The subcellular sites of sphingomyelin synthesis in BHK cells. Biochim Biophys Acta. 1997 Oct 30;1359(1):1–12. doi: 10.1016/s0167-4889(97)00088-8. [DOI] [PubMed] [Google Scholar]
- Monaco M. E., Alexander R. J., Snoek G. T., Moldover N. H., Wirtz K. W., Walden P. D. Evidence that mammalian phosphatidylinositol transfer protein regulates phosphatidylcholine metabolism. Biochem J. 1998 Oct 1;335(Pt 1):175–179. doi: 10.1042/bj3350175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obeid L. M., Hannun Y. A. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem. 1995 Jun;58(2):191–198. doi: 10.1002/jcb.240580208. [DOI] [PubMed] [Google Scholar]
- Ohashi M., Jan de Vries K., Frank R., Snoek G., Bankaitis V., Wirtz K., Huttner W. B. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature. 1995 Oct 12;377(6549):544–547. doi: 10.1038/377544a0. [DOI] [PubMed] [Google Scholar]
- Sauer H., Hofmann C., Wartenberg M., Wobus A. M., Hescheler J. Spontaneous calcium oscillations in embryonic stem cell-derived primitive endodermal cells. Exp Cell Res. 1998 Jan 10;238(1):13–22. doi: 10.1006/excr.1997.3809. [DOI] [PubMed] [Google Scholar]
- Sillence D. J., Allan D. Utilization of phosphatidylcholine and production of diradylglycerol as a consequence of sphingomyelin synthesis. Biochem J. 1998 Apr 1;331(Pt 1):251–256. doi: 10.1042/bj3310251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snoek G. T., Berrie C. P., Geijtenbeek T. B., van der Helm H. A., Cadeé J. A., Iurisci C., Corda D., Wirtz K. W. Overexpression of phosphatidylinositol transfer protein alpha in NIH3T3 cells activates a phospholipase A. J Biol Chem. 1999 Dec 10;274(50):35393–35399. doi: 10.1074/jbc.274.50.35393. [DOI] [PubMed] [Google Scholar]
- Tanaka S., Hosaka K. Cloning of a cDNA encoding a second phosphatidylinositol transfer protein of rat brain by complementation of the yeast sec14 mutation. J Biochem. 1994 May;115(5):981–984. doi: 10.1093/oxfordjournals.jbchem.a124448. [DOI] [PubMed] [Google Scholar]
- Ullman M. D., Radin N. S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem. 1974 Mar 10;249(5):1506–1512. [PubMed] [Google Scholar]
- Vanhaesebroeck B., Reed J. C., De Valck D., Grooten J., Miyashita T., Tanaka S., Beyaert R., Van Roy F., Fiers W. Effect of bcl-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor-mediated cytotoxicity. Oncogene. 1993 Apr;8(4):1075–1081. [PubMed] [Google Scholar]
- Vos J. P., Giudici M. L., van der Bijl P., Magni P., Marchesini S., van Golde L. M., Lopes-Cardozo M. Sphingomyelin is synthesized at the plasma membrane of oligodendrocytes and by purified myelin membranes: a study with fluorescent- and radio-labelled ceramide analogues. FEBS Lett. 1995 Jul 17;368(2):393–396. doi: 10.1016/0014-5793(95)00695-6. [DOI] [PubMed] [Google Scholar]
- Westerman J., de Vries K. J., Somerharju P., Timmermans-Hereijgers J. L., Snoek G. T., Wirtz K. W. A sphingomyelin-transferring protein from chicken liver. Use of pyrene-labeled phospholipid. J Biol Chem. 1995 Jun 16;270(24):14263–14266. doi: 10.1074/jbc.270.24.14263. [DOI] [PubMed] [Google Scholar]
- Wirtz K. W. Phospholipid transfer proteins revisited. Biochem J. 1997 Jun 1;324(Pt 2):353–360. doi: 10.1042/bj3240353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Liu B., Jenkins G. M., Hannun Y. A., Obeid L. M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem. 1997 Apr 11;272(15):9609–9612. doi: 10.1074/jbc.272.15.9609. [DOI] [PubMed] [Google Scholar]
- de Vries K. J., Heinrichs A. A., Cunningham E., Brunink F., Westerman J., Somerharju P. J., Cockcroft S., Wirtz K. W., Snoek G. T. An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system. Biochem J. 1995 Sep 1;310(Pt 2):643–649. doi: 10.1042/bj3100643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Helvoort A., Stoorvogel W., van Meer G., Burger N. J. Sphingomyelin synthase is absent from endosomes. J Cell Sci. 1997 Mar;110(Pt 6):781–788. doi: 10.1242/jcs.110.6.781. [DOI] [PubMed] [Google Scholar]
