Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):651–657.

Fibre-type specific modification of the activity and regulation of skeletal muscle pyruvate dehydrogenase kinase (PDK) by prolonged starvation and refeeding is associated with targeted regulation of PDK isoenzyme 4 expression.

M C Sugden 1, A Kraus 1, R A Harris 1, M J Holness 1
PMCID: PMC1220897  PMID: 10698691

Abstract

Using immunoblot analysis with antibodies raised against recombinant pyruvate dehydrogenase kinase (PDK) isoenzymes PDK2 and PDK4, we demonstrate selective changes in PDK isoenzyme expression in slow-twitch versus fast-twitch skeletal muscle types in response to prolonged (48 h) starvation and refeeding after starvation. Starvation increased PDK activity in both slow-twitch (soleus) and fast-twitch (anterior tibialis) skeletal muscle and was associated with loss of sensitivity of PDK to inhibition by pyruvate, with a greater effect in anterior tibialis. Starvation significantly increased PDK4 protein expression in both soleus and anterior tibialis, with a greater response in anterior tibialis. Starvation did not effect PDK2 protein expression in soleus, but modestly increased PDK2 expression in anterior tibialis. Refeeding for 4 h partially reversed the effect of 48-h starvation on PDK activity and PDK4 expression in both soleus and anterior tibialis, but the response was more marked in soleus than in anterior tibialis. Pyruvate sensitivity of PDK activity was also partially restored by refeeding, again with the greater response in soleus. It is concluded that targeted regulation of PDK4 isoenzyme expression in skeletal muscle in response to starvation and refeeding underlies the modulation of the regulatory characteristics of PDK in vivo. We propose that switching from a pyruvate-sensitive to a pyruvate-insensitive PDK isoenzyme in starvation (a) maintains a sufficiently high pyruvate concentration to ensure that the glucose-->alanine-->glucose cycle is not impaired, and (b) may 'spare' pyruvate for anaplerotic entry into the tricarboxylic acid cycle to support the entry of acetyl-CoA derived from fatty acid (FA) oxidation into the tricarboxylic acid cycle. We further speculate that FA oxidation by skeletal muscle is both forced and facilitated by upregulation of PDK4, which is perceived as an essential component of the operation of the glucose-FA cycle in starvation.

Full Text

The Full Text of this article is available as a PDF (177.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  2. Bertocci L. A., Jones J. G., Malloy C. R., Victor R. G., Thomas G. D. Oxidation of lactate and acetate in rat skeletal muscle: analysis by 13C-nuclear magnetic resonance spectroscopy. J Appl Physiol (1985) 1997 Jul;83(1):32–39. doi: 10.1152/jappl.1997.83.1.32. [DOI] [PubMed] [Google Scholar]
  3. Bertocci L. A., Lujan B. F. Incorporation and utilization of [3-13C]lactate and [1,2-13C]acetate by rat skeletal muscle. J Appl Physiol (1985) 1999 Jun;86(6):2077–2089. doi: 10.1152/jappl.1999.86.6.2077. [DOI] [PubMed] [Google Scholar]
  4. Bonen A., Baker S. K., Hatta H. Lactate transport and lactate transporters in skeletal muscle. Can J Appl Physiol. 1997 Dec;22(6):531–552. doi: 10.1139/h97-034. [DOI] [PubMed] [Google Scholar]
  5. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329(Pt 1):191–196. doi: 10.1042/bj3290191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brooks G. A., Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol (1985) 1994 Jun;76(6):2253–2261. doi: 10.1152/jappl.1994.76.6.2253. [DOI] [PubMed] [Google Scholar]
  7. Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeFronzo R. A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J. P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981 Dec;30(12):1000–1007. doi: 10.2337/diab.30.12.1000. [DOI] [PubMed] [Google Scholar]
  9. Ferré P., Leturque A., Burnol A. F., Penicaud L., Girard J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem J. 1985 May 15;228(1):103–110. doi: 10.1042/bj2280103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fryer L. G., Orfali K. A., Holness M. J., Saggerson E. D., Sugden M. C. The long-term regulation of skeletal muscle pyruvate dehydrogenase kinase by dietary lipid is dependent on fatty acid composition. Eur J Biochem. 1995 May 1;229(3):741–748. doi: 10.1111/j.1432-1033.1995.tb20522.x. [DOI] [PubMed] [Google Scholar]
  11. Fuller S. J., Randle P. J. Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J. 1984 Apr 15;219(2):635–646. doi: 10.1042/bj2190635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris R. A., Popov K. M., Zhao Y. Nutritional regulation of the protein kinases responsible for the phosphorylation of the alpha-ketoacid dehydrogenase complexes. J Nutr. 1995 Jun;125(6 Suppl):1758S–1761S. [PubMed] [Google Scholar]
  13. Holness M. J., Liu Y. L., Sugden M. C. Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holness M. J., Sugden M. C. Glucose disposal by skeletal muscle in response to re-feeding after progressive starvation. Biochem J. 1991 Jul 15;277(Pt 2):429–433. doi: 10.1042/bj2770429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holness M. J., Sugden M. C. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem J. 1990 Aug 15;270(1):245–249. doi: 10.1042/bj2700245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James D. E., Jenkins A. B., Kraegen E. W. Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats. Am J Physiol. 1985 May;248(5 Pt 1):E567–E574. doi: 10.1152/ajpendo.1985.248.5.E567. [DOI] [PubMed] [Google Scholar]
  17. Juel C., Halestrap A. P. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol. 1999 Jun 15;517(Pt 3):633–642. doi: 10.1111/j.1469-7793.1999.0633s.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerbey A. L., Radcliffe P. M., Randle P. J. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Biochem J. 1977 Jun 15;164(3):509–519. doi: 10.1042/bj1640509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerbey A. L., Randle P. J. Pyruvate dehydrogenase kinase/activator in rat heart mitochondria, Assay, effect of starvation, and effect of protein-synthesis inhibitors of starvation. Biochem J. 1982 Jul 15;206(1):103–111. doi: 10.1042/bj2060103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Majer M., Popov K. M., Harris R. A., Bogardus C., Prochazka M. Insulin downregulates pyruvate dehydrogenase kinase (PDK) mRNA: potential mechanism contributing to increased lipid oxidation in insulin-resistant subjects. Mol Genet Metab. 1998 Oct;65(2):181–186. doi: 10.1006/mgme.1998.2748. [DOI] [PubMed] [Google Scholar]
  21. McCullagh K. J., Poole R. C., Halestrap A. P., O'Brien M., Bonen A. Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol. 1996 Jul;271(1 Pt 1):E143–E150. doi: 10.1152/ajpendo.1996.271.1.E143. [DOI] [PubMed] [Google Scholar]
  22. Popov K. M., Hawes J. W., Harris R. A. Mitochondrial alpha-ketoacid dehydrogenase kinases: a new family of protein kinases. Adv Second Messenger Phosphoprotein Res. 1997;31:105–111. [PubMed] [Google Scholar]
  23. Pratt M. L., Roche T. E. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J Biol Chem. 1979 Aug 10;254(15):7191–7196. [PubMed] [Google Scholar]
  24. Priestman D. A., Orfali K. A., Sugden M. C. Pyruvate inhibition of pyruvate dehydrogenase kinase. Effects of progressive starvation and hyperthyroidism in vivo, and of dibutyryl cyclic AMP and fatty acids in cultured cardiac myocytes. FEBS Lett. 1996 Sep 16;393(2-3):174–178. doi: 10.1016/0014-5793(96)00877-0. [DOI] [PubMed] [Google Scholar]
  25. Randle P. J., Priestman D. A., Mistry S. C., Halsall A. Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem. 1994;55 (Suppl):1–11. doi: 10.1002/jcb.240550002. [DOI] [PubMed] [Google Scholar]
  26. Stace P. B., Fatania H. R., Jackson A., Kerbey A. L., Randle P. J. Cyclic AMP and free fatty acids in the longer-term regulation of pyruvate dehydrogenase kinase in rat soleus muscle. Biochim Biophys Acta. 1992 Jun 10;1135(2):201–206. doi: 10.1016/0167-4889(92)90137-z. [DOI] [PubMed] [Google Scholar]
  27. Storlien L. H., James D. E., Burleigh K. M., Chisholm D. J., Kraegen E. W. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol. 1986 Nov;251(5 Pt 1):E576–E583. doi: 10.1152/ajpendo.1986.251.5.E576. [DOI] [PubMed] [Google Scholar]
  28. Sugden M. C., Fryer L. G., Orfali K. A., Priestman D. A., Donald E., Holness M. J. Studies of the long-term regulation of hepatic pyruvate dehydrogenase kinase. Biochem J. 1998 Jan 1;329(Pt 1):89–94. doi: 10.1042/bj3290089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sugden M. C., Holness M. J., Donald E., Lall H. Substrate interactions in the short- and long-term regulation of renal glucose oxidation. Metabolism. 1999 Jun;48(6):707–715. doi: 10.1016/s0026-0495(99)90169-5. [DOI] [PubMed] [Google Scholar]
  30. Sugden M. C., Holness M. J. Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. FASEB J. 1994 Jan;8(1):54–61. doi: 10.1096/fasebj.8.1.8299890. [DOI] [PubMed] [Google Scholar]
  31. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson M. C., Jackson V. N., Heddle C., Price N. T., Pilegaard H., Juel C., Bonen A., Montgomery I., Hutter O. F., Halestrap A. P. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem. 1998 Jun 26;273(26):15920–15926. doi: 10.1074/jbc.273.26.15920. [DOI] [PubMed] [Google Scholar]
  33. Wu P., Sato J., Zhao Y., Jaskiewicz J., Popov K. M., Harris R. A. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998 Jan 1;329(Pt 1):197–201. doi: 10.1042/bj3290197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES