Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):691–698.

Mechanism of an antibody-catalysed allylic isomerization.

O Gonçalves 1, T Dintinger 1, J Lebreton 1, D Blanchard 1, C Tellier 1
PMCID: PMC1220901  PMID: 10698695

Abstract

The catalytic antibody 4B2, which was generated against a substituted amidine 1, catalyses the allylic isomerization of beta, gamma-unsaturated ketones with an acceleration factor (k(cat)/k(uncat)) of 1.5x10(3). On the basis of the 'bait and switch' strategy, it was reasoned that the positively charged hapten could elicit, by charge complementarity, an acidic residue (Asp or Glu) in the antibody-binding site in the right position to catalyse this proton transfer reaction. The pH dependence curve of k(cat)/K(m) shows a bell-shaped feature with an optimum at approx. pH 4.5. By cloning and sequencing the light and heavy chains of the 4B2 antibody, we confirmed the presence of several Asp and Glu residues in the complementarity-determining region loops. The antibody catalyses the alpha-proton exchange on the same substrates, demonstrating the involvement of a dienol intermediate in the reaction mechanism. Kinetic studies with (2)H-NMR provide evidence that alpha-proton abstraction is stereospecific. Whether the process involves one or two acid/base residues in this simple proton transfer or whether it is a concerted mechanism is discussed.

Full Text

The Full Text of this article is available as a PDF (168.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTY R. A., MASSEY V. On the interpretation of the pH variation of the maximum initial velocity of an enzyme-catalyzed reaction. Biochim Biophys Acta. 1954 Mar;13(3):347–353. doi: 10.1016/0006-3002(54)90340-6. [DOI] [PubMed] [Google Scholar]
  2. Cho H. S., Choi G., Choi K. Y., Oh B. H. Crystal structure and enzyme mechanism of Delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni. Biochemistry. 1998 Jun 9;37(23):8325–8330. doi: 10.1021/bi9801614. [DOI] [PubMed] [Google Scholar]
  3. Chothia C., Lesk A. M. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987 Aug 20;196(4):901–917. doi: 10.1016/0022-2836(87)90412-8. [DOI] [PubMed] [Google Scholar]
  4. Cummings J. G., Thorpe C. 3-Methyleneoctanoyl-CoA and 3-methyl-trans-2-octenoyl-CoA: two new mechanism-based inhibitors of medium chain acyl-CoA dehydrogenase from pig kidney. Biochemistry. 1994 Jan 25;33(3):788–797. doi: 10.1021/bi00169a021. [DOI] [PubMed] [Google Scholar]
  5. D'Ordine R. L., Bahnson B. J., Tonge P. J., Anderson V. E. Enoyl-coenzyme A hydratase-catalyzed exchange of the alpha-protons of coenzyme A thiol esters: a model for an enolized intermediate in the enzyme-catalyzed elimination? Biochemistry. 1994 Dec 13;33(49):14733–14742. doi: 10.1021/bi00253a011. [DOI] [PubMed] [Google Scholar]
  6. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
  7. Huse W. D., Sastry L., Iverson S. A., Kang A. S., Alting-Mees M., Burton D. R., Benkovic S. J., Lerner R. A. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989 Dec 8;246(4935):1275–1281. doi: 10.1126/science.2531466. [DOI] [PubMed] [Google Scholar]
  8. Khettal B., de Lauzon S., Desfosses B., Ushida S., Marquet A. A catalytic antibody isomerizing a delta 5-3-cétostéroïde. C R Acad Sci III. 1994 May;317(5):381–385. [PubMed] [Google Scholar]
  9. Kuliopulos A., Talalay P., Mildvan A. S. Combined effects of two mutations of catalytic residues on the ketosteroid isomerase reaction. Biochemistry. 1990 Nov 6;29(44):10271–10280. doi: 10.1021/bi00496a017. [DOI] [PubMed] [Google Scholar]
  10. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  11. Lefranc M. P., Giudicelli V., Busin C., Bodmer J., Müller W., Bontrop R., Lemaitre M., Malik A., Chaume D. IMGT, the International ImMunoGeneTics database. Nucleic Acids Res. 1998 Jan 1;26(1):297–303. doi: 10.1093/nar/26.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin C. H., Hoffman T. Z., Wirsching P., Barbas C. F., 3rd, Janda K. D., Lerner R. A. On roads not taken in the evolution of protein catalysts: antibody steroid isomerases that use an enamine mechanism. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11773–11776. doi: 10.1073/pnas.94.22.11773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Radzicka A., Wolfenden R. A proficient enzyme. Science. 1995 Jan 6;267(5194):90–93. doi: 10.1126/science.7809611. [DOI] [PubMed] [Google Scholar]
  14. Stevens F. J. Modification of an ELISA-based procedure for affinity determination: correction necessary for use with bivalent antibody. Mol Immunol. 1987 Oct;24(10):1055–1060. doi: 10.1016/0161-5890(87)90073-3. [DOI] [PubMed] [Google Scholar]
  15. Thorn S. N., Daniels R. G., Auditor M. T., Hilvert D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature. 1995 Jan 19;373(6511):228–230. doi: 10.1038/373228a0. [DOI] [PubMed] [Google Scholar]
  16. Wu Z. R., Ebrahimian S., Zawrotny M. E., Thornburg L. D., Perez-Alvarado G. C., Brothers P., Pollack R. M., Summers M. F. Solution structure of 3-oxo-delta5-steroid isomerase. Science. 1997 Apr 18;276(5311):415–418. doi: 10.1126/science.276.5311.415. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES