Abstract
MAX.3 is a monoclonal antibody that preferentially reacts with mature macrophages (MAC), monocyte-derived dendritic cells, megakaryocytes and platelets. In this study, we describe the characterization, purification and identification of the MAX.3 antigen. Immunoprecipitation and SDS/PAGE revealed different molecular masses of MAX.3 antigen in MAC (60-90 kDa) and platelets (58-64 kDa), whereas a similar size (45 kDa) was observed in both cell types after digestion with N-glycosidase F. Lectin affinity and sequential treatment with different glycosidases suggests complex type glycosylation of MAX.3 antigen in MAC and hybrid type glycosylation in platelets. Amino acid sequencing led to the identification of a corresponding cDNA clone and showed its identity to the sequence of the CD84 antigen, a member of the CD2 family of cell surface molecules. MAX.3/CD84 was further studied by immunohistochemistry and a variable expression was found on tissue MAC, confirming this antigen to be mainly a marker for MAC in situ.
Full Text
The Full Text of this article is available as a PDF (223.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammon C., Kreutz M., Rehli M., Krause S. W., Andreesen R. Platelets induce monocyte differentiation in serum-free coculture. J Leukoc Biol. 1998 Apr;63(4):469–476. doi: 10.1002/jlb.63.4.469. [DOI] [PubMed] [Google Scholar]
- Andreesen R., Bross K. J., Osterholz J., Emmrich F. Human macrophage maturation and heterogeneity: analysis with a newly generated set of monoclonal antibodies to differentiation antigens. Blood. 1986 May;67(5):1257–1264. [PubMed] [Google Scholar]
- Andreesen R., Brugger W., Scheibenbogen C., Kreutz M., Leser H. G., Rehm A., Löhr G. W. Surface phenotype analysis of human monocyte to macrophage maturation. J Leukoc Biol. 1990 Jun;47(6):490–497. doi: 10.1002/jlb.47.6.490. [DOI] [PubMed] [Google Scholar]
- Andreesen R., Brugger W., Thomssen C., Rehm A., Speck B., Löhr G. W. Defective monocyte-to-macrophage maturation in patients with aplastic anemia. Blood. 1989 Nov 1;74(6):2150–2156. [PubMed] [Google Scholar]
- Andreesen R., Gadd S., Costabel U., Leser H. G., Speth V., Cesnik B., Atkins R. C. Human macrophage maturation and heterogeneity: restricted expression of late differentiation antigens in situ. Cell Tissue Res. 1988 Aug;253(2):271–279. doi: 10.1007/BF00222281. [DOI] [PubMed] [Google Scholar]
- Andreesen R., Picht J., Löhr G. W. Primary cultures of human blood-born macrophages grown on hydrophobic teflon membranes. J Immunol Methods. 1983 Feb 11;56(3):295–304. doi: 10.1016/s0022-1759(83)80019-2. [DOI] [PubMed] [Google Scholar]
- Andreesen R., Sephton R. G., Gadd S., Atkins R. C., De Abrew S. Human macrophage maturation in vitro: expression of functional transferrin binding sites of high affinity. Blut. 1988 Aug;57(2):77–83. doi: 10.1007/BF00319730. [DOI] [PubMed] [Google Scholar]
- Anegón I., Blottiere H., Cuturi M. C., Lenne Y., Trinchieri G., Faust J., Perussia B. Characterization of a human monocyte antigen, B148.4, regulated during cell differentiation and activation. J Leukoc Biol. 1993 Apr;53(4):390–398. doi: 10.1002/jlb.53.4.390. [DOI] [PubMed] [Google Scholar]
- Bevilacqua M. P., Stengelin S., Gimbrone M. A., Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989 Mar 3;243(4895):1160–1165. doi: 10.1126/science.2466335. [DOI] [PubMed] [Google Scholar]
- Bross K. J., Schmidt G. M., Blume K. G., Santos S., Novitski M., Enders N. T. The peroxidase anti-peroxidase (PAP) method as a sensitive technique for demonstration of human cell surface antigens. Transplant Proc. 1979 Dec;11(4):1964–1965. [PubMed] [Google Scholar]
- Brugger W., Reinhardt D., Galanos C., Andreesen R. Inhibition of in vitro differentiation of human monocytes to macrophages by lipopolysaccharides (LPS): phenotypic and functional analysis. Int Immunol. 1991 Mar;3(3):221–227. doi: 10.1093/intimm/3.3.221. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Davis S. J., van der Merwe P. A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today. 1996 Apr;17(4):177–187. doi: 10.1016/0167-5699(96)80617-7. [DOI] [PubMed] [Google Scholar]
- Johnston R. B., Jr Current concepts: immunology. Monocytes and macrophages. N Engl J Med. 1988 Mar 24;318(12):747–752. doi: 10.1056/NEJM198803243181205. [DOI] [PubMed] [Google Scholar]
- Konur A., Kreutz M., Knüchel R., Krause S. W., Andreesen R. Three-dimensional co-culture of human monocytes and macrophages with tumor cells: analysis of macrophage differentiation and activation. Int J Cancer. 1996 May 29;66(5):645–652. doi: 10.1002/(SICI)1097-0215(19960529)66:5<645::AID-IJC11>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Krause S. W., Kreutz M., Zenke G., Andreesen R. Developmental regulation of granulocyte-macrophage colony-stimulating factor production during human monocyte-to-macrophage maturation. Ann Hematol. 1992 Apr;64(4):190–195. doi: 10.1007/BF01696222. [DOI] [PubMed] [Google Scholar]
- Krause S. W., Rehli M., Kreutz M., Schwarzfischer L., Paulauskis J. D., Andreesen R. Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996 Oct;60(4):540–545. doi: 10.1002/jlb.60.4.540. [DOI] [PubMed] [Google Scholar]
- Kreutz M., Andreesen R. Induction of human monocyte to macrophage maturation in vitro by 1,25-dihydroxyvitamin D3. Blood. 1990 Dec 15;76(12):2457–2461. [PubMed] [Google Scholar]
- Krusius T., Finne J., Rauvala H. The structural basis of the different affinities of two types of acidic N-glycosidic glycopeptides for concanavalin A--sepharose. FEBS Lett. 1976 Nov 15;72(1):117–120. doi: 10.1016/0014-5793(76)80911-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Meier T., Arni S., Malarkannan S., Poincelet M., Hoessli D. Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: a nonradioactive method for cell-surface protein analysis. Anal Biochem. 1992 Jul;204(1):220–226. doi: 10.1016/0003-2697(92)90165-4. [DOI] [PubMed] [Google Scholar]
- Meierhoff G., Krause S. W., Andreesen R. Comparative analysis of dendritic cells derived from blood monocytes or CD34+ hematopoietic progenitor cells. Immunobiology. 1998 Mar;198(5):501–513. doi: 10.1016/S0171-2985(98)80074-0. [DOI] [PubMed] [Google Scholar]
- Musson R. A., Shafran H., Henson P. M. Intracellular levels and stimulated release of lysosomal enzymes from human peripheral blood monocytes and monocyte-derived macrophages. J Reticuloendothel Soc. 1980 Sep;28(3):249–264. [PubMed] [Google Scholar]
- Möst J., Schwaeble W., Drach J., Sommerauer A., Dierich M. P. Regulation of the expression of ICAM-1 on human monocytes and monocytic tumor cell lines. J Immunol. 1992 Mar 15;148(6):1635–1642. [PubMed] [Google Scholar]
- Peters J. H., Gieseler R., Thiele B., Steinbach F. Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol Today. 1996 Jun;17(6):273–278. doi: 10.1016/0167-5699(96)80544-5. [DOI] [PubMed] [Google Scholar]
- Putz E. F., Männel D. N. Monocyte activation by tumour cells: a role for carbohydrate structures associated with CD2. Scand J Immunol. 1995 Jan;41(1):77–84. doi: 10.1111/j.1365-3083.1995.tb03536.x. [DOI] [PubMed] [Google Scholar]
- Rehli M., Krause S. W., Kreutz M., Andreesen R. Carboxypeptidase M is identical to the MAX.1 antigen and its expression is associated with monocyte to macrophage differentiation. J Biol Chem. 1995 Jun 30;270(26):15644–15649. doi: 10.1074/jbc.270.26.15644. [DOI] [PubMed] [Google Scholar]
- Rutherford M. S., Witsell A., Schook L. B. Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J Leukoc Biol. 1993 May;53(5):602–618. doi: 10.1002/jlb.53.5.602. [DOI] [PubMed] [Google Scholar]
- Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994 Apr 1;179(4):1109–1118. doi: 10.1084/jem.179.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Towbin H., Gordon J. Immunoblotting and dot immunobinding--current status and outlook. J Immunol Methods. 1984 Sep 4;72(2):313–340. doi: 10.1016/0022-1759(84)90001-2. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Tsuji T., Matsumoto I., Osawa T. Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry. 1981 Sep 29;20(20):5894–5899. doi: 10.1021/bi00523a037. [DOI] [PubMed] [Google Scholar]
- de la Fuente M. A., Pizcueta P., Nadal M., Bosch J., Engel P. CD84 leukocyte antigen is a new member of the Ig superfamily. Blood. 1997 Sep 15;90(6):2398–2405. [PubMed] [Google Scholar]
- van Furth R. Origin and turnover of monocytes and macrophages. Curr Top Pathol. 1989;79:125–150. [PubMed] [Google Scholar]
