Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):743–749.

Different Ca2+-releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs.

K T Jones 1, M Matsuda 1, J Parrington 1, M Katan 1, K Swann 1
PMCID: PMC1220908  PMID: 10698702

Abstract

A soluble phospholipase C (PLC) from boar sperm generates InsP(3) and hence causes Ca(2+) release when added to sea urchin egg homogenate. This PLC activity is associated with the ability of sperm extracts to cause Ca(2+) oscillations in mammalian eggs following fractionation. A sperm PLC may, therefore, be responsible for causing the observed Ca(2+) oscillations at fertilization. In the present study we have further characterized this boar sperm PLC activity using sea urchin egg homogenate. Consistent with a sperm PLC acting on egg PtdIns(4,5)P(2), the ability of sperm extracts to release Ca(2+) was blocked by preincubation with the PLC inhibitor U73122 or by the addition of neomycin to the homogenate. The Ca(2+)-releasing activity was also detectable in sperm from other species and in whole testis extracts. However, activity was not observed in extracts from other tissues. Moreover recombinant PLCbeta1, -gamma1, -gamma2, -delta1, all of which had higher specific activities than boar sperm extracts, were not able to release Ca(2+) in the sea urchin egg homogenate. In addition these PLCs were not able to cause Ca(2+) oscillations following microinjection into mouse eggs. These results imply that the sperm PLC possesses distinct properties that allow it to hydrolyse PtdIns(4,5)P(2) in eggs.

Full Text

The Full Text of this article is available as a PDF (137.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen V., Swigart P., Cheung R., Cockcroft S., Katan M. Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J. 1997 Oct 15;327(Pt 2):545–552. doi: 10.1042/bj3270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleasdale J. E., Thakur N. R., Gremban R. S., Bundy G. L., Fitzpatrick F. A., Smith R. J., Bunting S. Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther. 1990 Nov;255(2):756–768. [PubMed] [Google Scholar]
  3. Bootman M. D., Taylor C. W., Berridge M. J. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1992 Dec 15;267(35):25113–25119. [PubMed] [Google Scholar]
  4. Busa W. B., Nuccitelli R. An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol. 1985 Apr;100(4):1325–1329. doi: 10.1083/jcb.100.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciapa B., Whitaker M. Two phases of inositol polyphosphate and diacylglycerol production at fertilisation. FEBS Lett. 1986 Jan 20;195(1-2):347–351. doi: 10.1016/0014-5793(86)80191-0. [DOI] [PubMed] [Google Scholar]
  6. Clapper D. L., Lee H. C. Inositol trisphosphate induces calcium release from nonmitochondrial stores i sea urchin egg homogenates. J Biol Chem. 1985 Nov 15;260(26):13947–13954. [PubMed] [Google Scholar]
  7. Cuthbertson K. S., Cobbold P. H. Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature. 1985 Aug 8;316(6028):541–542. doi: 10.1038/316541a0. [DOI] [PubMed] [Google Scholar]
  8. Dupont G., McGuinness O. M., Johnson M. H., Berridge M. J., Borgese F. Phospholipase C in mouse oocytes: characterization of beta and gamma isoforms and their possible involvement in sperm-induced Ca2+ spiking. Biochem J. 1996 Jun 1;316(Pt 2):583–591. doi: 10.1042/bj3160583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisen A., Kiehart D. P., Wieland S. J., Reynolds G. T. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J Cell Biol. 1984 Nov;99(5):1647–1654. doi: 10.1083/jcb.99.5.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis M. V., James S. R., Perisic O., Downes C. P., Williams R. L., Katan M. Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J Biol Chem. 1998 May 8;273(19):11650–11659. doi: 10.1074/jbc.273.19.11650. [DOI] [PubMed] [Google Scholar]
  11. Evans J. P., Kopf G. S. Molecular mechanisms of sperm-egg interactions and egg activation. Andrologia. 1998 Aug-Sep;30(4-5):297–307. doi: 10.1111/j.1439-0272.1998.tb01174.x. [DOI] [PubMed] [Google Scholar]
  12. Fissore R. A., Gordo A. C., Wu H. Activation of development in mammals: is there a role for a sperm cytosolic factor? Theriogenology. 1998 Jan 1;49(1):43–52. doi: 10.1016/s0093-691x(97)00401-9. [DOI] [PubMed] [Google Scholar]
  13. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  14. Homa S. T., Swann K. A cytosolic sperm factor triggers calcium oscillations and membrane hyperpolarizations in human oocytes. Hum Reprod. 1994 Dec;9(12):2356–2361. doi: 10.1093/oxfordjournals.humrep.a138452. [DOI] [PubMed] [Google Scholar]
  15. Jaffe L. F. The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9883–9887. doi: 10.1073/pnas.88.21.9883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jin W., Lo T. M., Loh H. H., Thayer S. A. U73122 inhibits phospholipase C-dependent calcium mobilization in neuronal cells. Brain Res. 1994 Apr 11;642(1-2):237–243. doi: 10.1016/0006-8993(94)90927-x. [DOI] [PubMed] [Google Scholar]
  17. Jones K. T., Cruttwell C., Parrington J., Swann K. A mammalian sperm cytosolic phospholipase C activity generates inositol trisphosphate and causes Ca2+ release in sea urchin egg homogenates. FEBS Lett. 1998 Oct 23;437(3):297–300. doi: 10.1016/s0014-5793(98)01254-x. [DOI] [PubMed] [Google Scholar]
  18. Jones K. T., Soeller C., Cannell M. B. The passage of Ca2+ and fluorescent markers between the sperm and egg after fusion in the mouse. Development. 1998 Dec;125(23):4627–4635. doi: 10.1242/dev.125.23.4627. [DOI] [PubMed] [Google Scholar]
  19. Kimura Y., Yanagimachi R., Kuretake S., Bortkiewicz H., Perry A. C., Yanagimachi H. Analysis of mouse oocyte activation suggests the involvement of sperm perinuclear material. Biol Reprod. 1998 Jun;58(6):1407–1415. doi: 10.1095/biolreprod58.6.1407. [DOI] [PubMed] [Google Scholar]
  20. Kyozuka K., Deguchi R., Mohri T., Miyazaki S. Injection of sperm extract mimics spatiotemporal dynamics of Ca2+ responses and progression of meiosis at fertilization of ascidian oocytes. Development. 1998 Oct;125(20):4099–4105. doi: 10.1242/dev.125.20.4099. [DOI] [PubMed] [Google Scholar]
  21. Lawrence Y., Whitaker M., Swann K. Sperm-egg fusion is the prelude to the initial Ca2+ increase at fertilization in the mouse. Development. 1997 Jan;124(1):233–241. doi: 10.1242/dev.124.1.233. [DOI] [PubMed] [Google Scholar]
  22. Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
  23. Lee H. C., Walseth T. F., Bratt G. T., Hayes R. N., Clapper D. L. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jan 25;264(3):1608–1615. [PubMed] [Google Scholar]
  24. Lee S. J., Madden P. J., Shen S. S. U73122 blocked the cGMP-induced calcium release in sea urchin eggs. Exp Cell Res. 1998 Jul 10;242(1):328–340. doi: 10.1006/excr.1998.4070. [DOI] [PubMed] [Google Scholar]
  25. Lee S. J., Shen S. S. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate. Dev Biol. 1998 Jan 15;193(2):195–208. doi: 10.1006/dbio.1997.8792. [DOI] [PubMed] [Google Scholar]
  26. McCulloh D. H., Chambers E. L. Fusion of membranes during fertilization. Increases of the sea urchin egg's membrane capacitance and membrane conductance at the site of contact with the sperm. J Gen Physiol. 1992 Feb;99(2):137–175. doi: 10.1085/jgp.99.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miyazaki S., Yuzaki M., Nakada K., Shirakawa H., Nakanishi S., Nakade S., Mikoshiba K. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science. 1992 Jul 10;257(5067):251–255. doi: 10.1126/science.1321497. [DOI] [PubMed] [Google Scholar]
  28. Mogami H., Lloyd Mills C., Gallacher D. V. Phospholipase C inhibitor, U73122, releases intracellular Ca2+, potentiates Ins(1,4,5)P3-mediated Ca2+ release and directly activates ion channels in mouse pancreatic acinar cells. Biochem J. 1997 Jun 1;324(Pt 2):645–651. doi: 10.1042/bj3240645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nuccitelli R. How do sperm activate eggs? Curr Top Dev Biol. 1991;25:1–16. doi: 10.1016/s0070-2153(08)60409-3. [DOI] [PubMed] [Google Scholar]
  30. Oda S., Deguchi R., Mohri T., Shikano T., Nakanishi S., Miyazaki S. Spatiotemporal dynamics of the [Ca2+]i rise induced by microinjection of sperm extract into mouse eggs: preferential induction of a Ca2+ wave from the cortex mediated by the inositol 1,4,5-trisphosphate receptor. Dev Biol. 1999 May 1;209(1):172–185. doi: 10.1006/dbio.1999.9233. [DOI] [PubMed] [Google Scholar]
  31. Palermo G. D., Avrech O. M., Colombero L. T., Wu H., Wolny Y. M., Fissore R. A., Rosenwaks Z. Human sperm cytosolic factor triggers Ca2+ oscillations and overcomes activation failure of mammalian oocytes. Mol Hum Reprod. 1997 Apr;3(4):367–374. doi: 10.1093/molehr/3.4.367. [DOI] [PubMed] [Google Scholar]
  32. Parrington J., Jones K. T., Lai A., Swann K. The soluble sperm factor that causes Ca2+ release from sea-urchin (Lytechinus pictus) egg homogenates also triggers Ca2+ oscillations after injection into mouse eggs. Biochem J. 1999 Jul 1;341(Pt 1):1–4. [PMC free article] [PubMed] [Google Scholar]
  33. Parrington J., Swann K., Shevchenko V. I., Sesay A. K., Lai F. A. Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature. 1996 Jan 25;379(6563):364–368. doi: 10.1038/379364a0. [DOI] [PubMed] [Google Scholar]
  34. Paterson H. F., Savopoulos J. W., Perisic O., Cheung R., Ellis M. V., Williams R. L., Katan M. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem J. 1995 Dec 15;312(Pt 3):661–666. doi: 10.1042/bj3120661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rhee S. G., Suh P. G., Ryu S. H., Lee S. Y. Studies of inositol phospholipid-specific phospholipase C. Science. 1989 May 5;244(4904):546–550. doi: 10.1126/science.2541501. [DOI] [PubMed] [Google Scholar]
  36. Sette C., Bevilacqua A., Bianchini A., Mangia F., Geremia R., Rossi P. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development. 1997 Jun;124(11):2267–2274. doi: 10.1242/dev.124.11.2267. [DOI] [PubMed] [Google Scholar]
  37. Sette C., Bevilacqua A., Geremia R., Rossi P. Involvement of phospholipase Cgamma1 in mouse egg activation induced by a truncated form of the C-kit tyrosine kinase present in spermatozoa. J Cell Biol. 1998 Aug 24;142(4):1063–1074. doi: 10.1083/jcb.142.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shilling F. M., Carroll D. J., Muslin A. J., Escobedo J. A., Williams L. T., Jaffe L. A. Evidence for both tyrosine kinase and G-protein-coupled pathways leading to starfish egg activation. Dev Biol. 1994 Apr;162(2):590–599. doi: 10.1006/dbio.1994.1112. [DOI] [PubMed] [Google Scholar]
  39. Speksnijder J. E., Corson D. W., Sardet C., Jaffe L. F. Free calcium pulses following fertilization in the ascidian egg. Dev Biol. 1989 Sep;135(1):182–190. doi: 10.1016/0012-1606(89)90168-1. [DOI] [PubMed] [Google Scholar]
  40. Stith B. J., Goalstone M., Silva S., Jaynes C. Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol Biol Cell. 1993 Apr;4(4):435–443. doi: 10.1091/mbc.4.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stricker S. A. Repetitive calcium waves induced by fertilization in the nemertean worm Cerebratulus lacteus. Dev Biol. 1996 Jun 15;176(2):243–263. doi: 10.1006/dbio.1996.0131. [DOI] [PubMed] [Google Scholar]
  42. Swann K. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development. 1990 Dec;110(4):1295–1302. doi: 10.1242/dev.110.4.1295. [DOI] [PubMed] [Google Scholar]
  43. Swann K. Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store. Biochem J. 1992 Oct 1;287(Pt 1):79–84. doi: 10.1042/bj2870079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Swann K., Ozil J. P. Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol. 1994;152:183–222. doi: 10.1016/s0074-7696(08)62557-7. [DOI] [PubMed] [Google Scholar]
  45. Swann K., Whitaker M. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J Cell Biol. 1986 Dec;103(6 Pt 1):2333–2342. doi: 10.1083/jcb.103.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Takenawa T., Homma Y., Emori Y. Properties of phospholipase C isozymes. Methods Enzymol. 1991;197:511–518. doi: 10.1016/0076-6879(91)97177-z. [DOI] [PubMed] [Google Scholar]
  47. Turner P. R., Sheetz M. P., Jaffe L. A. Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature. 1984 Aug 2;310(5976):414–415. doi: 10.1038/310414a0. [DOI] [PubMed] [Google Scholar]
  48. Wang J. P., Needleman D. H., Seryshev A. B., Aghdasi B., Slavik K. J., Liu S. Q., Pedersen S. E., Hamilton S. L. Interaction between ryanodine and neomycin binding sites on Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1996 Apr 5;271(14):8387–8393. doi: 10.1074/jbc.271.14.8387. [DOI] [PubMed] [Google Scholar]
  49. Williams S. E., Schacht J. Binding of neomycin and calcium to phospholipids and other anionic compounds. J Antibiot (Tokyo) 1986 Mar;39(3):457–462. doi: 10.7164/antibiotics.39.457. [DOI] [PubMed] [Google Scholar]
  50. Wolosker H., Kline D., Bian Y., Blackshaw S., Cameron A. M., Fralich T. J., Schnaar R. L., Snyder S. H. Molecularly cloned mammalian glucosamine-6-phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB J. 1998 Jan;12(1):91–99. doi: 10.1096/fasebj.12.1.91. [DOI] [PubMed] [Google Scholar]
  51. Wu H., He C. L., Fissore R. A. Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs. Mol Reprod Dev. 1997 Feb;46(2):176–189. doi: 10.1002/(SICI)1098-2795(199702)46:2<176::AID-MRD8>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  52. Wu H., He C. L., Jehn B., Black S. J., Fissore R. A. Partial characterization of the calcium-releasing activity of porcine sperm cytosolic extracts. Dev Biol. 1998 Nov 15;203(2):369–381. doi: 10.1006/dbio.1998.9070. [DOI] [PubMed] [Google Scholar]
  53. Yule D. I., Williams J. A. U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem. 1992 Jul 15;267(20):13830–13835. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES