Abstract
Different cytotoxic drugs induce cell death by activating the apoptotic programme; a family of cysteinyl aspartate proteases named caspases has been shown to be involved in the initiation as well as the execution of this kind of cell death. In the present study, cleavage of D4-GDI (Rho-GDI 2), an abundant haemopoietic-cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, was demonstrated after treatment of BJAB Burkitt-like lymphoma cells with taxol or epirubicin. The cleavage of D4-GDI occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. By using high-resolution two-dimensional gel electrophoresis it was shown that this cleavage is specific: whereas the level of the homologous protein Rho-GDI 1 was not significantly altered during drug-induced apoptosis and in cytochrome c/dATP-activated cellular extracts, D4-GDI disappeared owing to proteolytic cleavage. Inhibitor experiments with Z-DEVD-fmk (in which Z stands for benzyloxycarbonyl and fmk for fluoromethyl ketone) and microsequencing of the D4-GDI fragment revealed that this occurs at the caspase-3 cleavage site. Our results strongly suggest the differential regulation of the homologous GDP dissociation inhibitors Rho-GDI 1 and D4-GDI during drug-induced apoptosis by proteolysis mediated by caspase-3 but not by caspase-1. Owing to their crucial role as modulators of Rho GTPases, this might in turn have a significant impact on the mechanisms that induce the cytoskeletal and morphological changes in apoptotic cells.
Full Text
The Full Text of this article is available as a PDF (211.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arends M. J., Wyllie A. H. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991;32:223–254. doi: 10.1016/b978-0-12-364932-4.50010-1. [DOI] [PubMed] [Google Scholar]
- Ashkenazi A., Dixit V. M. Death receptors: signaling and modulation. Science. 1998 Aug 28;281(5381):1305–1308. doi: 10.1126/science.281.5381.1305. [DOI] [PubMed] [Google Scholar]
- Cohen G. M. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326(Pt 1):1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. J., Duke R. C., Fadok V. A., Sellins K. S. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. doi: 10.1146/annurev.iy.10.040192.001411. [DOI] [PubMed] [Google Scholar]
- Danley D. E., Chuang T. H., Bokoch G. M. Defective Rho GTPase regulation by IL-1 beta-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J Immunol. 1996 Jul 15;157(2):500–503. [PubMed] [Google Scholar]
- Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997 Jul 17;388(6639):300–304. doi: 10.1038/40901. [DOI] [PubMed] [Google Scholar]
- Ellis R. E., Yuan J. Y., Horvitz H. R. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991;7:663–698. doi: 10.1146/annurev.cb.07.110191.003311. [DOI] [PubMed] [Google Scholar]
- Geyer M., Wittinghofer A. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr Opin Struct Biol. 1997 Dec;7(6):786–792. doi: 10.1016/s0959-440x(97)80147-9. [DOI] [PubMed] [Google Scholar]
- Gorvel J. P., Chang T. C., Boretto J., Azuma T., Chavrier P. Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity. FEBS Lett. 1998 Jan 30;422(2):269–273. doi: 10.1016/s0014-5793(98)00020-9. [DOI] [PubMed] [Google Scholar]
- Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol. 1994;10:31–54. doi: 10.1146/annurev.cb.10.110194.000335. [DOI] [PubMed] [Google Scholar]
- Hiwasa T., Tokita H., Sakiyama S., Nakagaware A. Enhancement of chemosensitivity toward anticancer drugs by high expression of caspase-1 in NIH 3T3 cells. Anticancer Drugs. 1998 Jan;9(1):82–87. doi: 10.1097/00001813-199801000-00010. [DOI] [PubMed] [Google Scholar]
- Ibrado A. M., Kim C. N., Bhalla K. Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome C and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia. 1998 Dec;12(12):1930–1936. doi: 10.1038/sj.leu.2401218. [DOI] [PubMed] [Google Scholar]
- Klose J., Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 1995 Jun;16(6):1034–1059. doi: 10.1002/elps.11501601175. [DOI] [PubMed] [Google Scholar]
- Kottke T. J., Blajeski A. L., Martins L. M., Mesner P. W., Jr, Davidson N. E., Earnshaw W. C., Armstrong D. K., Kaufmann S. H. Comparison of paclitaxel-, 5-fluoro-2'-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis. Evidence for EGF-induced anoikis. J Biol Chem. 1999 May 28;274(22):15927–15936. doi: 10.1074/jbc.274.22.15927. [DOI] [PubMed] [Google Scholar]
- Krammer P. H., Behrmann I., Daniel P., Dhein J., Debatin K. M. Regulation of apoptosis in the immune system. Curr Opin Immunol. 1994 Apr;6(2):279–289. doi: 10.1016/0952-7915(94)90102-3. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997 Nov 14;91(4):479–489. doi: 10.1016/s0092-8674(00)80434-1. [DOI] [PubMed] [Google Scholar]
- Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
- Mann M., Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994 Dec 15;66(24):4390–4399. doi: 10.1021/ac00096a002. [DOI] [PubMed] [Google Scholar]
- Müller E. C., Schümann M., Rickers A., Bommert K., Wittmann-Liebold B., Otto A. Study of Burkitt lymphoma cell line proteins by high resolution two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry. Electrophoresis. 1999 Feb;20(2):320–330. doi: 10.1002/(SICI)1522-2683(19990201)20:2<320::AID-ELPS320>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Na S., Chuang T. H., Cunningham A., Turi T. G., Hanke J. H., Bokoch G. M., Danley D. E. D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem. 1996 May 10;271(19):11209–11213. doi: 10.1074/jbc.271.19.11209. [DOI] [PubMed] [Google Scholar]
- Narumiya S. The small GTPase Rho: cellular functions and signal transduction. J Biochem. 1996 Aug;120(2):215–228. doi: 10.1093/oxfordjournals.jbchem.a021401. [DOI] [PubMed] [Google Scholar]
- Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
- Otto A., Thiede B., Müller E. C., Scheler C., Wittmann-Liebold B., Jungblut P. Identification of human myocardial proteins separated by two-dimensional electrophoresis using an effective sample preparation for mass spectrometry. Electrophoresis. 1996 Oct;17(10):1643–1650. doi: 10.1002/elps.1150171027. [DOI] [PubMed] [Google Scholar]
- Palucka K. A., Knaust E., Xu D., Macnamara B., Porwit-Macdonald A., Gruber A., Peterson C., Björkholm M., Pisa P. Intraclonal heterogeneity in the in vitro daunorubicin-induced apoptosis in acute myeloid leukemia. Leuk Lymphoma. 1999 Jan;32(3-4):309–316. doi: 10.3109/10428199909167391. [DOI] [PubMed] [Google Scholar]
- Rickers A., Brockstedt E., Mapara M. Y., Otto A., Dörken B., Bommert K. Inhibition of CPP32 blocks surface IgM-mediated apoptosis and D4-GDI cleavage in human BL60 Burkitt lymphoma cells. Eur J Immunol. 1998 Jan;28(1):296–304. doi: 10.1002/(SICI)1521-4141(199801)28:01<296::AID-IMMU296>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997 Nov 14;91(4):443–446. doi: 10.1016/s0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
- Sasaki T., Takai Y. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem Biophys Res Commun. 1998 Apr 28;245(3):641–645. doi: 10.1006/bbrc.1998.8253. [DOI] [PubMed] [Google Scholar]
- Slee E. A., Harte M. T., Kluck R. M., Wolf B. B., Casiano C. A., Newmeyer D. D., Wang H. G., Reed J. C., Nicholson D. W., Alnemri E. S. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999 Jan 25;144(2):281–292. doi: 10.1083/jcb.144.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Sorger P. K., Dobles M., Tournebize R., Hyman A. A. Coupling cell division and cell death to microtubule dynamics. Curr Opin Cell Biol. 1997 Dec;9(6):807–814. doi: 10.1016/s0955-0674(97)80081-6. [DOI] [PubMed] [Google Scholar]
- Suzuki A., Kawabata T., Kato M. Necessity of interleukin-1beta converting enzyme cascade in taxotere-initiated death signaling. Eur J Pharmacol. 1998 Feb 5;343(1):87–92. doi: 10.1016/s0014-2999(97)01520-3. [DOI] [PubMed] [Google Scholar]
- Tewari M., Dixit V. M. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem. 1995 Feb 17;270(7):3255–3260. doi: 10.1074/jbc.270.7.3255. [DOI] [PubMed] [Google Scholar]
- Tewari M., Quan L. T., O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S., Dixit V. M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995 Jun 2;81(5):801–809. doi: 10.1016/0092-8674(95)90541-3. [DOI] [PubMed] [Google Scholar]
- Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
- Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
- Villa P., Kaufmann S. H., Earnshaw W. C. Caspases and caspase inhibitors. Trends Biochem Sci. 1997 Oct;22(10):388–393. doi: 10.1016/s0968-0004(97)01107-9. [DOI] [PubMed] [Google Scholar]
- Wesselborg S., Engels I. H., Rossmann E., Los M., Schulze-Osthoff K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood. 1999 May 1;93(9):3053–3063. [PubMed] [Google Scholar]
- Wieder T., Geilen C. C., Wieprecht M., Becker A., Orfanos C. E. Identification of a putative membrane-interacting domain of CTP:phosphocholine cytidylyltransferase from rat liver. FEBS Lett. 1994 May 30;345(2-3):207–210. doi: 10.1016/0014-5793(94)00433-1. [DOI] [PubMed] [Google Scholar]
- Wieder T., Orfanos C. E., Geilen C. C. Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J Biol Chem. 1998 May 1;273(18):11025–11031. doi: 10.1074/jbc.273.18.11025. [DOI] [PubMed] [Google Scholar]
- Yin L., Schwartzberg P., Scharton-Kersten T. M., Staudt L., Lenardo M. Immune responses in mice deficient in Ly-GDI, a lymphoid-specific regulator of Rho GTPases. Mol Immunol. 1997 Apr;34(6):481–491. doi: 10.1016/s0161-5890(97)00053-9. [DOI] [PubMed] [Google Scholar]
- Zhou Q., Snipas S., Orth K., Muzio M., Dixit V. M., Salvesen G. S. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem. 1997 Mar 21;272(12):7797–7800. doi: 10.1074/jbc.272.12.7797. [DOI] [PubMed] [Google Scholar]
