Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):841–847.

Molecular mechanisms of contraction-regulated cardiac glucose transport.

M Till 1, D M Ouwens 1, A Kessler 1, J Eckel 1
PMCID: PMC1220921  PMID: 10698715

Abstract

Insulin and contraction are the most important regulators of glucose utilization in cardiac muscle. In contrast with insulin, the intracellular signalling elements of contraction have remained unexplored. In the present studies, adult rat ventricular cardiomyocytes were electrically stimulated to perform rhythmic contractions to permit the determination of potential sites of convergence of contraction and insulin signalling to glucose transport. The participation of phosphoinositide 3-kinase (PI-3K) in Ca(2+)- and contraction-stimulated 3-O-methylglucose transport was suggested by the great sensitivity of this process towards the PI-3K inhibitors wortmannin and LY294002 and by the presence of PI-3K activity in anti-phosphotyrosine immunoprecipitates from contracted cells. Initial signalling events of insulin action, including receptor kinase activation, the tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 and the recruitment of PI-3K to IRS-1 and IRS-2, were found not to be involved in contraction-mediated signalling. However, immunoprecipitation of p85alpha revealed a markedly enhanced tyrosine phosphorylation of an unknown co-precipitated 200 kDa protein in response to both stimuli. It is concluded that contraction-regulated cardiac glucose transport involves the activation of PI-3K in response to upstream signalling pathways different from that of insulin.

Full Text

The Full Text of this article is available as a PDF (216.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltensperger K., Kozma L. M., Jaspers S. R., Czech M. P. Regulation by insulin of phosphatidylinositol 3'-kinase bound to alpha- and beta-isoforms of p85 regulatory subunit. J Biol Chem. 1994 Nov 18;269(46):28937–28946. [PubMed] [Google Scholar]
  2. Bihler I., McNevin S. R., Sawh P. C. Regulation of glucose transport in Ca2+-tolerant myocytes from adult rat heart. Biochim Biophys Acta. 1985 Aug 30;846(2):208–215. doi: 10.1016/0167-4889(85)90067-9. [DOI] [PubMed] [Google Scholar]
  3. Brozinick J. T., Jr, Birnbaum M. J. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J Biol Chem. 1998 Jun 12;273(24):14679–14682. doi: 10.1074/jbc.273.24.14679. [DOI] [PubMed] [Google Scholar]
  4. Burgering B. M., Medema R. H., Maassen J. A., van de Wetering M. L., van der Eb A. J., McCormick F., Bos J. L. Insulin stimulation of gene expression mediated by p21ras activation. EMBO J. 1991 May;10(5):1103–1109. doi: 10.1002/j.1460-2075.1991.tb08050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheatham B., Vlahos C. J., Cheatham L., Wang L., Blenis J., Kahn C. R. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994 Jul;14(7):4902–4911. doi: 10.1128/mcb.14.7.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke J. F., Young P. W., Yonezawa K., Kasuga M., Holman G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J. 1994 Jun 15;300(Pt 3):631–635. doi: 10.1042/bj3000631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coderre L., Kandror K. V., Vallega G., Pilch P. F. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem. 1995 Nov 17;270(46):27584–27588. doi: 10.1074/jbc.270.46.27584. [DOI] [PubMed] [Google Scholar]
  8. Dorrestijn J., Ouwens D. M., Van den Berghe N., Bos J. L., Maassen J. A. Expression of a dominant-negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin. Diabetologia. 1996 May;39(5):558–563. doi: 10.1007/BF00403302. [DOI] [PubMed] [Google Scholar]
  9. Eckel J., Pandalis G., Reinauer H. Insulin action on the glucose transport system in isolated cardiocytes from adult rat. Biochem J. 1983 May 15;212(2):385–392. doi: 10.1042/bj2120385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Etgen G. J., Jr, Fryburg D. A., Gibbs E. M. Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. Diabetes. 1997 Nov;46(11):1915–1919. doi: 10.2337/diab.46.11.1915. [DOI] [PubMed] [Google Scholar]
  11. Etgen G. J., Valasek K. M., Broderick C. L., Miller A. R. In vivo adenoviral delivery of recombinant human protein kinase C-zeta stimulates glucose transport activity in rat skeletal muscle. J Biol Chem. 1999 Aug 6;274(32):22139–22142. doi: 10.1074/jbc.274.32.22139. [DOI] [PubMed] [Google Scholar]
  12. Gao J., Ren J., Gulve E. A., Holloszy J. O. Additive effect of contractions and insulin on GLUT-4 translocation into the sarcolemma. J Appl Physiol (1985) 1994 Oct;77(4):1597–1601. doi: 10.1152/jappl.1994.77.4.1597. [DOI] [PubMed] [Google Scholar]
  13. Goodyear L. J., Giorgino F., Balon T. W., Condorelli G., Smith R. J. Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol. 1995 May;268(5 Pt 1):E987–E995. doi: 10.1152/ajpendo.1995.268.5.E987. [DOI] [PubMed] [Google Scholar]
  14. Hara K., Yonezawa K., Sakaue H., Ando A., Kotani K., Kitamura T., Kitamura Y., Ueda H., Stephens L., Jackson T. R. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7415–7419. doi: 10.1073/pnas.91.16.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hayashi T., Wojtaszewski J. F., Goodyear L. J. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997 Dec;273(6 Pt 1):E1039–E1051. doi: 10.1152/ajpendo.1997.273.6.E1039. [DOI] [PubMed] [Google Scholar]
  16. Holloszy J. O., Hansen P. A. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol. 1996;128:99–193. doi: 10.1007/3-540-61343-9_8. [DOI] [PubMed] [Google Scholar]
  17. Inukai K., Funaki M., Ogihara T., Katagiri H., Kanda A., Anai M., Fukushima Y., Hosaka T., Suzuki M., Shin B. C. p85alpha gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50alpha, p55alpha, and p85alpha, with different PI 3-kinase activity elevating responses to insulin. J Biol Chem. 1997 Mar 21;272(12):7873–7882. doi: 10.1074/jbc.272.12.7873. [DOI] [PubMed] [Google Scholar]
  18. Ito Y., Uchijima Y., Ariga M., Seki T., Takenaka A., Hakuno F., Takahashi S. I., Ariga T., Noguchi T. Interaction between cAMP-dependent and insulin-dependent signal pathways in tyrosine phosphorylation in primary cultures of rat hepatocytes. Biochem J. 1997 Jun 1;324(Pt 2):379–388. doi: 10.1042/bj3240379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. King P. A., Betts J. J., Horton E. D., Horton E. S. Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle. Am J Physiol. 1993 Aug;265(2 Pt 2):R447–R452. doi: 10.1152/ajpregu.1993.265.2.R447. [DOI] [PubMed] [Google Scholar]
  20. Kolter T., Uphues I., Eckel J. Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol. 1997 Jul;273(1 Pt 1):E59–E67. doi: 10.1152/ajpendo.1997.273.1.E59. [DOI] [PubMed] [Google Scholar]
  21. Kolter T., Uphues I., Wichelhaus A., Reinauer H., Eckel J. Contraction-induced translocation of the glucose transporter Glut4 in isolated ventricular cardiomyocytes. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1207–1214. doi: 10.1016/0006-291x(92)92333-s. [DOI] [PubMed] [Google Scholar]
  22. Kotani K., Carozzi A. J., Sakaue H., Hara K., Robinson L. J., Clark S. F., Yonezawa K., James D. E., Kasuga M. Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1995 Apr 6;209(1):343–348. doi: 10.1006/bbrc.1995.1509. [DOI] [PubMed] [Google Scholar]
  23. Kotani K., Ogawa W., Matsumoto M., Kitamura T., Sakaue H., Hino Y., Miyake K., Sano W., Akimoto K., Ohno S. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol. 1998 Dec;18(12):6971–6982. doi: 10.1128/mcb.18.12.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kurth-Kraczek E. J., Hirshman M. F., Goodyear L. J., Winder W. W. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999 Aug;48(8):1667–1671. doi: 10.2337/diabetes.48.8.1667. [DOI] [PubMed] [Google Scholar]
  25. Kusunoki M., Storlien L. H., MacDessi J., Oakes N. D., Kennedy C., Chisholm D. J., Kraegen E. W. Muscle glucose uptake during and after exercise is normal in insulin-resistant rats. Am J Physiol. 1993 Feb;264(2 Pt 1):E167–E172. doi: 10.1152/ajpendo.1993.264.2.E167. [DOI] [PubMed] [Google Scholar]
  26. Le Marchand-Brustel Y., Gautier N., Cormont M., Van Obberghen E. Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology. 1995 Aug;136(8):3564–3570. doi: 10.1210/endo.136.8.7628394. [DOI] [PubMed] [Google Scholar]
  27. Lee A. D., Hansen P. A., Holloszy J. O. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 1995 Mar 13;361(1):51–54. doi: 10.1016/0014-5793(95)00147-2. [DOI] [PubMed] [Google Scholar]
  28. Lehmann-Klose S., Beinbrech B., Cuppoletti J., Gratzl M., Rüegg J. C., Pfitzer G. Ca(2+)- and GTP[gamma S]-induced translocation of the glucose transporter, GLUT-4, to the plasma membrane of permeabilized cardiomyocytes determined using a novel immunoprecipitation method. Pflugers Arch. 1995 Jul;430(3):333–339. doi: 10.1007/BF00373907. [DOI] [PubMed] [Google Scholar]
  29. Liu L. S., Tanaka H., Ishii S., Eckel J. The new antidiabetic drug MCC-555 acutely sensitizes insulin signaling in isolated cardiomyocytes. Endocrinology. 1998 Nov;139(11):4531–4539. doi: 10.1210/endo.139.11.6310. [DOI] [PubMed] [Google Scholar]
  30. Lund S., Holman G. D., Schmitz O., Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5817–5821. doi: 10.1073/pnas.92.13.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lund S., Pryor P. R., Ostergaard S., Schmitz O., Pedersen O., Holman G. D. Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle. FEBS Lett. 1998 Apr 3;425(3):472–474. doi: 10.1016/s0014-5793(98)00293-2. [DOI] [PubMed] [Google Scholar]
  32. Nesher R., Karl I. E., Kipnis D. M. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol. 1985 Sep;249(3 Pt 1):C226–C232. doi: 10.1152/ajpcell.1985.249.3.C226. [DOI] [PubMed] [Google Scholar]
  33. Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994 Feb 4;269(5):3568–3573. [PubMed] [Google Scholar]
  34. Rattigan S., Appleby G. J., Clark M. G. Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta. 1991 Sep 3;1094(2):217–223. doi: 10.1016/0167-4889(91)90012-m. [DOI] [PubMed] [Google Scholar]
  35. Richter E. A., Mikines K. J., Galbo H., Kiens B. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol (1985) 1989 Feb;66(2):876–885. doi: 10.1152/jappl.1989.66.2.876. [DOI] [PubMed] [Google Scholar]
  36. Rose H., Kammermeier H. Contraction and metabolic activity of electrically stimulated cardiac myocytes from adult rats. Pflugers Arch. 1986 Jul;407(1):116–118. doi: 10.1007/BF00580731. [DOI] [PubMed] [Google Scholar]
  37. Shepherd P. R., Navé B. T., Rincon J., Nolte L. A., Bevan A. P., Siddle K., Zierath J. R., Wallberg-Henriksson H. Differential regulation of phosphoinositide 3-kinase adapter subunit variants by insulin in human skeletal muscle. J Biol Chem. 1997 Jul 25;272(30):19000–19007. doi: 10.1074/jbc.272.30.19000. [DOI] [PubMed] [Google Scholar]
  38. Shepherd P. R., Withers D. J., Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998 Aug 1;333(Pt 3):471–490. doi: 10.1042/bj3330471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sherwood D. J., Dufresne S. D., Markuns J. F., Cheatham B., Moller D. E., Aronson D., Goodyear L. J. Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Am J Physiol. 1999 May;276(5 Pt 1):E870–E878. doi: 10.1152/ajpendo.1999.276.5.E870. [DOI] [PubMed] [Google Scholar]
  40. Slot J. W., Geuze H. J., Gigengack S., James D. E., Lienhard G. E. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7815–7819. doi: 10.1073/pnas.88.17.7815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Standaert M. L., Bandyopadhyay G., Sajan M. P., Cong L., Quon M. J., Farese R. V. Okadaic acid activates atypical protein kinase C (zeta/lambda) in rat and 3T3/L1 adipocytes. An apparent requirement for activation of Glut4 translocation and glucose transport. J Biol Chem. 1999 May 14;274(20):14074–14078. doi: 10.1074/jbc.274.20.14074. [DOI] [PubMed] [Google Scholar]
  42. Thorell A., Hirshman M. F., Nygren J., Jorfeldt L., Wojtaszewski J. F., Dufresne S. D., Horton E. S., Ljungqvist O., Goodyear L. J. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol. 1999 Oct;277(4 Pt 1):E733–E741. doi: 10.1152/ajpendo.1999.277.4.E733. [DOI] [PubMed] [Google Scholar]
  43. Tsakiridis T., McDowell H. E., Walker T., Downes C. P., Hundal H. S., Vranic M., Klip A. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology. 1995 Oct;136(10):4315–4322. doi: 10.1210/endo.136.10.7664650. [DOI] [PubMed] [Google Scholar]
  44. Turinsky J., Damrau-Abney A. Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: study with insulin and exercise. Am J Physiol. 1999 Jan;276(1 Pt 2):R277–R282. doi: 10.1152/ajpregu.1999.276.1.R277. [DOI] [PubMed] [Google Scholar]
  45. Virkamäki A., Ueki K., Kahn C. R. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest. 1999 Apr;103(7):931–943. doi: 10.1172/JCI6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang Q., Somwar R., Bilan P. J., Liu Z., Jin J., Woodgett J. R., Klip A. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol. 1999 Jun;19(6):4008–4018. doi: 10.1128/mcb.19.6.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. White M. F. The IRS-signalling system in insulin and cytokine action. Philos Trans R Soc Lond B Biol Sci. 1996 Feb 29;351(1336):181–189. doi: 10.1098/rstb.1996.0015. [DOI] [PubMed] [Google Scholar]
  48. Winder W. W., Hardie D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999 Jul;277(1 Pt 1):E1–10. doi: 10.1152/ajpendo.1999.277.1.E1. [DOI] [PubMed] [Google Scholar]
  49. Yeh J. I., Gulve E. A., Rameh L., Birnbaum M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995 Feb 3;270(5):2107–2111. doi: 10.1074/jbc.270.5.2107. [DOI] [PubMed] [Google Scholar]
  50. Youn J. H., Gulve E. A., Holloszy J. O. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol. 1991 Mar;260(3 Pt 1):C555–C561. doi: 10.1152/ajpcell.1991.260.3.C555. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES