Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 1;347(Pt 1):61–67.

5-Hydroxytryptamine1A receptor/Gibetagamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts.

Y V Mukhin 1, M N Garnovskaya 1, G Collinsworth 1, J S Grewal 1, D Pendergrass 1, T Nagai 1, S Pinckney 1, E L Greene 1, J R Raymond 1
PMCID: PMC1220931  PMID: 10727402

Abstract

The hypothesis of this work is that the 'serotonin' or 5-hydroxytryptamine (5-HT)(1A) receptor, which activates the extracellular signal-regulated kinase (ERK) through a G(i)betagamma-mediated pathway, does so through the intermediate actions of reactive oxygen species (ROS). Five criteria were shown to support a key role for ROS in the activation of ERK by the 5-HT(1A) receptor. (1) Antioxidants inhibit activation of ERK by 5-HT. (2) Application of cysteine-reactive oxidant molecules activates ERK. (3) The 5-HT(1A) receptor alters cellular redox properties, and generates both superoxide and hydrogen peroxide. (4) A specific ROS-producing enzyme [NAD(P)H oxidase] is involved in the activation of ERK. (5) There is specificity both in the effects of various chemical oxidizers, and in the putative location of the ROS in the ERK activation pathway. We propose that NAD(P)H oxidase is located in the ERK activation pathway stimulated by the transfected 5-HT(1A) receptor in Chinese hamster ovary (CHO) cells downstream of G(i)betagamma subunits and upstream of or at the level of the non-receptor tyrosine kinase, Src. Moreover, these experiments provide confirmation that the transfected human 5-HT(1A) receptor induces the production of ROS (superoxide and hydrogen peroxide) in CHO cells, and support the possibility that an NAD(P)H oxidase-like enzyme might be involved in the 5-HT-mediated generation of both superoxide and hydrogen peroxide.

Full Text

The Full Text of this article is available as a PDF (310.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe J., Kusuhara M., Ulevitch R. J., Berk B. C., Lee J. D. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem. 1996 Jul 12;271(28):16586–16590. doi: 10.1074/jbc.271.28.16586. [DOI] [PubMed] [Google Scholar]
  2. Aikawa R., Komuro I., Yamazaki T., Zou Y., Kudoh S., Tanaka M., Shiojima I., Hiroi Y., Yazaki Y. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest. 1997 Oct 1;100(7):1813–1821. doi: 10.1172/JCI119709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baas A. S., Berk B. C. Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells. Circ Res. 1995 Jul;77(1):29–36. doi: 10.1161/01.res.77.1.29. [DOI] [PubMed] [Google Scholar]
  4. Bauskin A. R., Alkalay I., Ben-Neriah Y. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell. 1991 Aug 23;66(4):685–696. doi: 10.1016/0092-8674(91)90114-e. [DOI] [PubMed] [Google Scholar]
  5. Carter W. O., Narayanan P. K., Robinson J. P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol. 1994 Feb;55(2):253–258. doi: 10.1002/jlb.55.2.253. [DOI] [PubMed] [Google Scholar]
  6. Chanock S. J., el Benna J., Smith R. M., Babior B. M. The respiratory burst oxidase. J Biol Chem. 1994 Oct 7;269(40):24519–24522. [PubMed] [Google Scholar]
  7. Chen Q., Olashaw N., Wu J. Participation of reactive oxygen species in the lysophosphatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J Biol Chem. 1995 Dec 1;270(48):28499–28502. doi: 10.1074/jbc.270.48.28499. [DOI] [PubMed] [Google Scholar]
  8. Cross A. R. Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation. Free Radic Biol Med. 1990;8(1):71–93. doi: 10.1016/0891-5849(90)90147-b. [DOI] [PubMed] [Google Scholar]
  9. Cunnick J. M., Dorsey J. F., Mei L., Wu J. Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. Biochem Mol Biol Int. 1998 Aug;45(5):887–894. doi: 10.1002/iub.7510450506. [DOI] [PubMed] [Google Scholar]
  10. Daulhac L., Kowalski-Chauvel A., Pradayrol L., Vaysse N., Seva C. Src-family tyrosine kinases in activation of ERK-1 and p85/p110-phosphatidylinositol 3-kinase by G/CCKB receptors. J Biol Chem. 1999 Jul 16;274(29):20657–20663. doi: 10.1074/jbc.274.29.20657. [DOI] [PubMed] [Google Scholar]
  11. Dean R. T., Fu S., Stocker R., Davies M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997 May 15;324(Pt 1):1–18. doi: 10.1042/bj3240001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Della Rocca G. J., Mukhin Y. V., Garnovskaya M. N., Daaka Y., Clark G. J., Luttrell L. M., Lefkowitz R. J., Raymond J. R. Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J Biol Chem. 1999 Feb 19;274(8):4749–4753. doi: 10.1074/jbc.274.8.4749. [DOI] [PubMed] [Google Scholar]
  13. Denu J. M., Lohse D. L., Vijayalakshmi J., Saper M. A., Dixon J. E. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2493–2498. doi: 10.1073/pnas.93.6.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Diatchuk V., Lotan O., Koshkin V., Wikstroem P., Pick E. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem. 1997 May 16;272(20):13292–13301. doi: 10.1074/jbc.272.20.13292. [DOI] [PubMed] [Google Scholar]
  15. Fischer E. H., Charbonneau H., Tonks N. K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science. 1991 Jul 26;253(5018):401–406. doi: 10.1126/science.1650499. [DOI] [PubMed] [Google Scholar]
  16. Fujii H., Ichimori K., Hoshiai K., Nakazawa H. Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem. 1997 Dec 26;272(52):32773–32778. doi: 10.1074/jbc.272.52.32773. [DOI] [PubMed] [Google Scholar]
  17. Garnovskaya M. N., Gettys T. W., van Biesen T., Prpic V., Chuprun J. K., Raymond J. R. 5-HT1A receptor activates Na+/H+ exchange in CHO-K1 cells through Gialpha2 and Gialpha3. J Biol Chem. 1997 Mar 21;272(12):7770–7776. doi: 10.1074/jbc.272.12.7770. [DOI] [PubMed] [Google Scholar]
  18. Garnovskaya M. N., Mukhin Y., Raymond J. R. Rapid activation of sodium-proton exchange and extracellular signal-regulated protein kinase in fibroblasts by G protein-coupled 5-HT1A receptor involves distinct signalling cascades. Biochem J. 1998 Feb 15;330(Pt 1):489–495. doi: 10.1042/bj3300489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garnovskaya M. N., van Biesen T., Hawe B., Casañas Ramos S., Lefkowitz R. J., Raymond J. R. Ras-dependent activation of fibroblast mitogen-activated protein kinase by 5-HT1A receptor via a G protein beta gamma-subunit-initiated pathway. Biochemistry. 1996 Oct 29;35(43):13716–13722. doi: 10.1021/bi961764n. [DOI] [PubMed] [Google Scholar]
  20. González-Rubio M., Voit S., Rodríguez-Puyol D., Weber M., Marx M. Oxidative stress induces tyrosine phosphorylation of PDGF alpha-and beta-receptors and pp60c-src in mesangial cells. Kidney Int. 1996 Jul;50(1):164–173. doi: 10.1038/ki.1996.299. [DOI] [PubMed] [Google Scholar]
  21. Grewal J. S., Mukhin Y. V., Garnovskaya M. N., Raymond J. R., Greene E. L. Serotonin 5-HT2A receptor induces TGF-beta1 expression in mesangial cells via ERK: proliferative and fibrotic signals. Am J Physiol. 1999 Jun;276(6 Pt 2):F922–F930. doi: 10.1152/ajprenal.1999.276.6.F922. [DOI] [PubMed] [Google Scholar]
  22. Griendling K. K., Minieri C. A., Ollerenshaw J. D., Alexander R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994 Jun;74(6):1141–1148. doi: 10.1161/01.res.74.6.1141. [DOI] [PubMed] [Google Scholar]
  23. Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
  24. Guyton K. Z., Liu Y., Gorospe M., Xu Q., Holbrook N. J. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996 Feb 23;271(8):4138–4142. doi: 10.1074/jbc.271.8.4138. [DOI] [PubMed] [Google Scholar]
  25. Hecht D., Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun. 1992 Oct 30;188(2):773–779. doi: 10.1016/0006-291x(92)91123-8. [DOI] [PubMed] [Google Scholar]
  26. Konishi H., Tanaka M., Takemura Y., Matsuzaki H., Ono Y., Kikkawa U., Nishizuka Y. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11233–11237. doi: 10.1073/pnas.94.21.11233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kranenburg O., Verlaan I., Hordijk P. L., Moolenaar W. H. Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J. 1997 Jun 2;16(11):3097–3105. doi: 10.1093/emboj/16.11.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Krieger-Brauer H. I., Kather H. Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem J. 1995 Apr 15;307(Pt 2):549–556. doi: 10.1042/bj3070549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kyriakis J. M., Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996 Oct 4;271(40):24313–24316. doi: 10.1074/jbc.271.40.24313. [DOI] [PubMed] [Google Scholar]
  30. Lander H. M., Milbank A. J., Tauras J. M., Hajjar D. P., Hempstead B. L., Schwartz G. D., Kraemer R. T., Mirza U. A., Chait B. T., Burk S. C. Redox regulation of cell signalling. Nature. 1996 May 30;381(6581):380–381. doi: 10.1038/381380a0. [DOI] [PubMed] [Google Scholar]
  31. Le Cabec V., Maridonneau-Parini I. Complete and reversible inhibition of NADPH oxidase in human neutrophils by phenylarsine oxide at a step distal to membrane translocation of the enzyme subunits. J Biol Chem. 1995 Feb 3;270(5):2067–2073. doi: 10.1074/jbc.270.5.2067. [DOI] [PubMed] [Google Scholar]
  32. Liu Y., Guyton K. Z., Gorospe M., Xu Q., Lee J. C., Holbrook N. J. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med. 1996;21(6):771–781. doi: 10.1016/0891-5849(96)00176-1. [DOI] [PubMed] [Google Scholar]
  33. Lo Y. Y., Cruz T. F. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem. 1995 May 19;270(20):11727–11730. doi: 10.1074/jbc.270.20.11727. [DOI] [PubMed] [Google Scholar]
  34. Lo Y. Y., Wong J. M., Cruz T. F. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem. 1996 Jun 28;271(26):15703–15707. doi: 10.1074/jbc.271.26.15703. [DOI] [PubMed] [Google Scholar]
  35. Patterson C., Ruef J., Madamanchi N. R., Barry-Lane P., Hu Z., Horaist C., Ballinger C. A., Brasier A. R., Bode C., Runge M. S. Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem. 1999 Jul 9;274(28):19814–19822. doi: 10.1074/jbc.274.28.19814. [DOI] [PubMed] [Google Scholar]
  36. Pennisi E. Superoxides relay Ras protein's oncogenic message. Science. 1997 Mar 14;275(5306):1567–1568. doi: 10.1126/science.275.5306.1567. [DOI] [PubMed] [Google Scholar]
  37. Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
  38. Puri P. L., Avantaggiati M. L., Burgio V. L., Chirillo P., Collepardo D., Natoli G., Balsano C., Levrero M. Reactive oxygen intermediates mediate angiotensin II-induced c-Jun.c-Fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells. J Biol Chem. 1995 Sep 22;270(38):22129–22134. doi: 10.1074/jbc.270.38.22129. [DOI] [PubMed] [Google Scholar]
  39. Qin S., Inazu T., Yamamura H. Activation and tyrosine phosphorylation of p72syk as well as calcium mobilization after hydrogen peroxide stimulation in peripheral blood lymphocytes. Biochem J. 1995 May 15;308(Pt 1):347–352. doi: 10.1042/bj3080347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Quillet-Mary A., Jaffrézou J. P., Mansat V., Bordier C., Naval J., Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997 Aug 22;272(34):21388–21395. doi: 10.1074/jbc.272.34.21388. [DOI] [PubMed] [Google Scholar]
  41. Rao G. N., Lassègue B., Griendling K. K., Alexander R. W. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidonic acid. Oncogene. 1993 Oct;8(10):2759–2764. [PubMed] [Google Scholar]
  42. Satriano J., Schlondorff D. Activation and attenuation of transcription factor NF-kB in mouse glomerular mesangial cells in response to tumor necrosis factor-alpha, immunoglobulin G, and adenosine 3':5'-cyclic monophosphate. Evidence for involvement of reactive oxygen species. J Clin Invest. 1994 Oct;94(4):1629–1636. doi: 10.1172/JCI117505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  44. Shibutani T., Johnson T. M., Yu Z. X., Ferrans V. J., Moss J., Epstein S. E. Pertussis toxin-sensitive G proteins as mediators of the signal transduction pathways activated by cytomegalovirus infection of smooth muscle cells. J Clin Invest. 1997 Oct 15;100(8):2054–2061. doi: 10.1172/JCI119738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stone R. L., Dixon J. E. Protein-tyrosine phosphatases. J Biol Chem. 1994 Dec 16;269(50):31323–31326. [PubMed] [Google Scholar]
  46. Studer R. K., Craven P. A., DeRubertis F. R. Antioxidant inhibition of protein kinase C-signaled increases in transforming growth factor-beta in mesangial cells. Metabolism. 1997 Aug;46(8):918–925. doi: 10.1016/s0026-0495(97)90080-9. [DOI] [PubMed] [Google Scholar]
  47. Tonks N. K., Diltz C. D., Fischer E. H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988 May 15;263(14):6731–6737. [PubMed] [Google Scholar]
  48. Ushio-Fukai M., Alexander R. W., Akers M., Griendling K. K. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998 Jun 12;273(24):15022–15029. doi: 10.1074/jbc.273.24.15022. [DOI] [PubMed] [Google Scholar]
  49. Waddell T. K., Fialkow L., Chan C. K., Kishimoto T. K., Downey G. P. Potentiation of the oxidative burst of human neutrophils. A signaling role for L-selectin. J Biol Chem. 1994 Jul 15;269(28):18485–18491. [PubMed] [Google Scholar]
  50. Wilmer W. A., Tan L. C., Dickerson J. A., Danne M., Rovin B. H. Interleukin-1beta induction of mitogen-activated protein kinases in human mesangial cells. Role of oxidation. J Biol Chem. 1997 Apr 18;272(16):10877–10881. doi: 10.1074/jbc.272.16.10877. [DOI] [PubMed] [Google Scholar]
  51. van Biesen T., Luttrell L. M., Hawes B. E., Lefkowitz R. J. Mitogenic signaling via G protein-coupled receptors. Endocr Rev. 1996 Dec;17(6):698–714. doi: 10.1210/edrv-17-6-698. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES