Abstract
Earlier reports have shown a remarkable synergism between InsP(4) and InsP(3) [either Ins(1,4,5)P(3) or Ins(2,4,5)P(3)] in activating Ca(2+)-dependent K(+) and Cl(-) currents in mouse lacrimal cells [Changya, Gallacher, Irvine, Potter and Petersen (1989) J. Membr. Biol. 109, 85-93; Smith (1992) Biochem. J. 283, 27-30]. However, Bird, Rossier, Hughes, Shears, Armstrong and Putney [(1991) Nature (London) 352, 162-165] reported that they could see no such synergism in the same cell type. A major experimental difference between the two laboratories lies in whether or not the cells were maintained in primary culture before use. Here we have compared directly the responses to inositol polyphosphates in freshly isolated cells versus cells cultured for 6-72 h. In the cultured cells, Ins(2,4,5)P(3) at 100 microM produced a robust stimulation of K(+) and Cl(-) currents, as much as an order of magnitude greater than that observed in the freshly isolated cells. However, the freshly isolated cells could be restored to a sensitivity similar to cultured cells by the addition of InsP(4) at a concentration two orders of magnitude lower than that of Ins(2,4,5)P(3). We discuss the implications of this with respect to the actions of InsP(4), including the possibility that disruption of the cellular structure during the isolation of the cells exposes an extreme manifestation of a possible physiological role for InsP(4) in controlling calcium-store integrity.
Full Text
The Full Text of this article is available as a PDF (145.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bird G. J., Obie J. F., Putney J. W., Jr Functional homogeneity of the non-mitochondrial Ca2+ pool in intact mouse lacrimal acinar cells. J Biol Chem. 1992 Sep 15;267(26):18382–18386. [PubMed] [Google Scholar]
- Bird G. S., Putney J. W., Jr Effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-activated Ca2+ signaling in mouse lacrimal acinar cells. J Biol Chem. 1996 Mar 22;271(12):6766–6770. doi: 10.1074/jbc.271.12.6766. [DOI] [PubMed] [Google Scholar]
- Bird G. S., Rossier M. F., Hughes A. R., Shears S. B., Armstrong D. L., Putney J. W., Jr Activation of Ca2+ entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature. 1991 Jul 11;352(6331):162–165. doi: 10.1038/352162a0. [DOI] [PubMed] [Google Scholar]
- Bird G. S., Rossier M. F., Obie J. F., Putney J. W., Jr Sinusoidal oscillations in intracellular calcium requiring negative feedback by protein kinase C. J Biol Chem. 1993 Apr 25;268(12):8425–8428. [PubMed] [Google Scholar]
- Changya L., Gallacher D. V., Irvine R. F., Petersen O. H. Inositol 1,3,4,5-tetrakisphosphate and inositol 1,4,5-trisphosphate act by different mechanisms when controlling Ca2+ in mouse lacrimal acinar cells. FEBS Lett. 1989 Jul 17;251(1-2):43–48. doi: 10.1016/0014-5793(89)81425-5. [DOI] [PubMed] [Google Scholar]
- Changya L., Gallacher D. V., Irvine R. F., Potter B. V., Petersen O. H. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J Membr Biol. 1989 Jul;109(1):85–93. doi: 10.1007/BF01870793. [DOI] [PubMed] [Google Scholar]
- Communi D., Vanweyenberg V., Erneux C. Purification and biochemical properties of a high-molecular-mass inositol 1,4,5-trisphosphate 3-kinase isoenzyme in human platelets. Biochem J. 1994 Mar 15;298(Pt 3):669–673. doi: 10.1042/bj2980669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
- Findlay I., Petersen O. H. Acetylcholine stimulates a Ca2+-dependent C1- conductance in mouse lacrimal acinar cells. Pflugers Arch. 1985 Mar;403(3):328–330. doi: 10.1007/BF00583609. [DOI] [PubMed] [Google Scholar]
- Gawler D. J., Potter B. V., Gigg R., Nahorski S. R. Interactions between inositol tris- and tetrakis-phosphates. Effects on intracellular Ca2+ mobilization in SH-SY5Y cells. Biochem J. 1991 May 15;276(Pt 1):163–167. doi: 10.1042/bj2760163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hann L. E., Kelleher R. S., Sullivan D. A. Influence of culture conditions on the androgen control of secretory component production by acinar cells from the rat lacrimal gland. Invest Ophthalmol Vis Sci. 1991 Aug;32(9):2610–2621. [PubMed] [Google Scholar]
- Irvine R. F., Brown K. D., Berridge M. J. Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J. 1984 Aug 15;222(1):269–272. doi: 10.1042/bj2220269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irvine R. F. Calcium control and InsP4. Nature. 1991 Jul 11;352(6331):115–115. doi: 10.1038/352115a0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellular Ca2+? Biochem Soc Trans. 1989 Feb;17(1):6–9. doi: 10.1042/bst0170006. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. Inositol tetrakisphosphate as a second messenger: confusions, contradictions, and a potential resolution. Bioessays. 1991 Aug;13(8):419–427. doi: 10.1002/bies.950130810. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Letcher A. J., Lander D. J., Berridge M. J. Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells. Biochem J. 1986 Nov 15;240(1):301–304. doi: 10.1042/bj2400301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwan C. Y., Takemura H., Obie J. F., Thastrup O., Putney J. W., Jr Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol. 1990 Jun;258(6 Pt 1):C1006–C1015. doi: 10.1152/ajpcell.1990.258.6.C1006. [DOI] [PubMed] [Google Scholar]
- Liu P., Scott J., Smith P. M. Intracellular calcium signalling in rat parotid acinar cells that lack secretory vesicles. Biochem J. 1998 Mar 1;330(Pt 2):847–852. doi: 10.1042/bj3300847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loomis-Husselbee J. W., Cullen P. J., Dreikausen U. E., Irvine R. F., Dawson A. P. Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-triphosphate-stimulated Ca2+ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol triphosphate-binding sites. Biochem J. 1996 Mar 15;314(Pt 3):811–816. doi: 10.1042/bj3140811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loomis-Husselbee J. W., Walker C. D., Bottomley J. R., Cullen P. J., Irvine R. F., Dawson A. P. Modulation of Ins(2,4,5)P3-stimulated Ca2+ mobilization by ins(1,3,4, 5)P4: enhancement by activated G-proteins, and evidence for the involvement of a GAP1 protein, a putative Ins(1,3,4,5)P4 receptor. Biochem J. 1998 May 1;331(Pt 3):947–952. doi: 10.1042/bj3310947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKrill J. J. Protein-protein interactions in intracellular Ca2+-release channel function. Biochem J. 1999 Feb 1;337(Pt 3):345–361. [PMC free article] [PubMed] [Google Scholar]
- Maruyama Y. Control of inositol polyphosphate-mediated calcium mobilization by arachidonic acid in pancreatic acinar cells of rats. J Physiol. 1993 Apr;463:729–746. doi: 10.1113/jphysiol.1993.sp019619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris A. P., Gallacher D. V., Irvine R. F., Petersen O. H. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature. 1987 Dec 17;330(6149):653–655. doi: 10.1038/330653a0. [DOI] [PubMed] [Google Scholar]
- Osipchuk Y. V., Wakui M., Yule D. I., Gallacher D. V., Petersen O. H. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca2+: simultaneous microfluorimetry and Ca2+ dependent Cl- current recording in single pancreatic acinar cells. EMBO J. 1990 Mar;9(3):697–704. doi: 10.1002/j.1460-2075.1990.tb08162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
- Renard-Rooney D. C., Hajnóczky G., Seitz M. B., Schneider T. G., Thomas A. P. Imaging of inositol 1,4,5-trisphosphate-induced Ca2+ fluxes in single permeabilized hepatocytes. Demonstration of both quantal and nonquantal patterns of Ca2+ release. J Biol Chem. 1993 Nov 5;268(31):23601–23610. [PubMed] [Google Scholar]
- Ribeiro C. M., Putney J. W. Differential effects of protein kinase C activation on calcium storage and capacitative calcium entry in NIH 3T3 cells. J Biol Chem. 1996 Aug 30;271(35):21522–21528. doi: 10.1074/jbc.271.35.21522. [DOI] [PubMed] [Google Scholar]
- Smith P. M., Gallacher D. V. Acetylcholine- and caffeine-evoked repetitive transient Ca(2+)-activated K+ and C1- currents in mouse submandibular cells. J Physiol. 1992 Apr;449:109–120. doi: 10.1113/jphysiol.1992.sp019077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. M., Gallacher D. V. Acetylcholine- and caffeine-evoked repetitive transient Ca(2+)-activated K+ and C1- currents in mouse submandibular cells. J Physiol. 1992 Apr;449:109–120. doi: 10.1113/jphysiol.1992.sp019077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. M., Gallacher D. V. Thapsigargin-induced Ca2+ mobilization in acutely isolated mouse lacrimal acinar cells is dependent on a basal level of Ins(1,4,5)P3 and is inhibited by heparin. Biochem J. 1994 Apr 1;299(Pt 1):37–40. doi: 10.1042/bj2990037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. M. Ins(1,3,4,5)P4 promotes sustained activation of the Ca(2+(-dependent Cl- current in isolated mouse lacrimal cells. Biochem J. 1992 Apr 1;283(Pt 1):27–30. doi: 10.1042/bj2830027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soriano S., Banting G. Possible roles of inositol 1,4,5-trisphosphate 3-kinase B in calcium homeostasis. FEBS Lett. 1997 Feb 10;403(1):1–4. doi: 10.1016/s0014-5793(96)01516-5. [DOI] [PubMed] [Google Scholar]
- Stricker S. A., Silva R., Smythe T. Calcium and endoplasmic reticulum dynamics during oocyte maturation and fertilization in the marine worm Cerebratulus lacteus. Dev Biol. 1998 Nov 15;203(2):305–322. doi: 10.1006/dbio.1998.9058. [DOI] [PubMed] [Google Scholar]
- Subramanian K., Meyer T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell. 1997 Jun 13;89(6):963–971. doi: 10.1016/s0092-8674(00)80281-0. [DOI] [PubMed] [Google Scholar]
- Trautmann A., Marty A. Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands. Proc Natl Acad Sci U S A. 1984 Jan;81(2):611–615. doi: 10.1073/pnas.81.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Zee L., Sipma H., Nelemans A., Den Hertog A. The role of inositol 1,3,4,5-tetrakisphosphate in internal Ca2+ mobilization following histamine H1 receptor stimulation in DDT1 MF-2 cells. Eur J Pharmacol. 1995 May 26;289(3):463–469. doi: 10.1016/0922-4106(95)90155-8. [DOI] [PubMed] [Google Scholar]
- Vanweyenberg V., Communi D., D'Santos C. S., Erneux C. Tissue- and cell-specific expression of Ins(1,4,5)P3 3-kinase isoenzymes. Biochem J. 1995 Mar 1;306(Pt 2):429–435. doi: 10.1042/bj3060429. [DOI] [PMC free article] [PubMed] [Google Scholar]