Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 1;347(Pt 1):83–87.

The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

R H Lorentsen 1, J H Graversen 1, N R Caterer 1, H C Thogersen 1, M Etzerodt 1
PMCID: PMC1220934  PMID: 10727405

Abstract

Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

Full Text

The Full Text of this article is available as a PDF (111.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berglund L., Petersen T. E. The gene structure of tetranectin, a plasminogen binding protein. FEBS Lett. 1992 Aug 31;309(1):15–19. doi: 10.1016/0014-5793(92)80729-z. [DOI] [PubMed] [Google Scholar]
  2. Christensen L., Clemmensen I. Differences in tetranectin immunoreactivity between benign and malignant breast tissue. Histochemistry. 1991;95(5):427–433. doi: 10.1007/BF00315737. [DOI] [PubMed] [Google Scholar]
  3. Christensen L., Clemmensen I. Tetranectin immunoreactivity in normal human tissues. An immunohistochemical study of exocrine epithelia and mesenchyme. Histochemistry. 1989;92(1):29–35. doi: 10.1007/BF00495012. [DOI] [PubMed] [Google Scholar]
  4. Clemmensen I. Interaction of tetranectin with sulphated polysaccharides and trypan blue. Scand J Clin Lab Invest. 1989 Dec;49(8):719–725. doi: 10.3109/00365518909091550. [DOI] [PubMed] [Google Scholar]
  5. Clemmensen I., Petersen L. C., Kluft C. Purification and characterization of a novel, oligomeric, plasminogen kringle 4 binding protein from human plasma: tetranectin. Eur J Biochem. 1986 Apr 15;156(2):327–333. doi: 10.1111/j.1432-1033.1986.tb09586.x. [DOI] [PubMed] [Google Scholar]
  6. De Vries T. J., De Wit P. E., Clemmensen I., Verspaget H. W., Weidle U. H., Bröcker E. B., Ruiter D. J., Van Muijen G. N. Tetranectin and plasmin/plasminogen are similarly distributed at the invasive front of cutaneous melanoma lesions. J Pathol. 1996 Jul;179(3):260–265. doi: 10.1002/(SICI)1096-9896(199607)179:3<260::AID-PATH586>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  7. Drickamer K., Taylor M. E. Biology of animal lectins. Annu Rev Cell Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
  8. Faller B., Mely Y., Gerard D., Bieth J. G. Heparin-induced conformational change and activation of mucus proteinase inhibitor. Biochemistry. 1992 Sep 8;31(35):8285–8290. doi: 10.1021/bi00150a023. [DOI] [PubMed] [Google Scholar]
  9. Fromm J. R., Hileman R. E., Caldwell E. E., Weiler J. M., Linhardt R. J. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys. 1995 Nov 10;323(2):279–287. doi: 10.1006/abbi.1995.9963. [DOI] [PubMed] [Google Scholar]
  10. Fromm J. R., Hileman R. E., Caldwell E. E., Weiler J. M., Linhardt R. J. Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys. 1997 Jul 1;343(1):92–100. doi: 10.1006/abbi.1997.0147. [DOI] [PubMed] [Google Scholar]
  11. Fuhlendorff J., Clemmensen I., Magnusson S. Primary structure of tetranectin, a plasminogen kringle 4 binding plasma protein: homology with asialoglycoprotein receptors and cartilage proteoglycan core protein. Biochemistry. 1987 Oct 20;26(21):6757–6764. doi: 10.1021/bi00395a027. [DOI] [PubMed] [Google Scholar]
  12. Graversen J. H., Lorentsen R. H., Jacobsen C., Moestrup S. K., Sigurskjold B. W., Thogersen H. C., Etzerodt M. The plasminogen binding site of the C-type lectin tetranectin is located in the carbohydrate recognition domain, and binding is sensitive to both calcium and lysine. J Biol Chem. 1998 Oct 30;273(44):29241–29246. doi: 10.1074/jbc.273.44.29241. [DOI] [PubMed] [Google Scholar]
  13. Hogg P. J., Winzor D. J. Studies of lectin-carbohydrate interactions by quantitative affinity chromatography: systems with galactose and ovalbumin as saccharidic ligand. Anal Biochem. 1987 Jun;163(2):331–338. doi: 10.1016/0003-2697(87)90232-6. [DOI] [PubMed] [Google Scholar]
  14. Holtet T. L., Graversen J. H., Clemmensen I., Thøgersen H. C., Etzerodt M. Tetranectin, a trimeric plasminogen-binding C-type lectin. Protein Sci. 1997 Jul;6(7):1511–1515. doi: 10.1002/pro.5560060715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iba K., Sawada N., Chiba H., Wewer U. M., Ishii S., Mori M. Transforming growth factor-beta 1 downregulates dexamethasone-induced tetranectin gene expression during the in vitro mineralization of the human osteoblastic cell line SV-HFO. FEBS Lett. 1995 Oct 2;373(1):1–4. doi: 10.1016/0014-5793(95)00992-i. [DOI] [PubMed] [Google Scholar]
  16. Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
  17. Jaquinod M., Holtet T. L., Etzerodt M., Clemmensen I., Thøgersen H. C., Roepstorff P. Mass spectrometric characterisation of post-translational modification and genetic variation in human tetranectin. Biol Chem. 1999 Nov;380(11):1307–1314. doi: 10.1515/BC.1999.166. [DOI] [PubMed] [Google Scholar]
  18. Kastrup J. S., Nielsen B. B., Rasmussen H., Holtet T. L., Graversen J. H., Etzerodt M., Thøgersen H. C., Larsen I. K. Structure of the C-type lectin carbohydrate recognition domain of human tetranectin. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):757–766. doi: 10.1107/s0907444997016806. [DOI] [PubMed] [Google Scholar]
  19. Kluft C., Jie A. F., Los P., de Wit E., Havekes L. Functional analogy between lipoprotein(a) and plasminogen in the binding to the kringle 4 binding protein, tetranectin. Biochem Biophys Res Commun. 1989 Jun 15;161(2):427–433. doi: 10.1016/0006-291x(89)92616-8. [DOI] [PubMed] [Google Scholar]
  20. Kluft C., Los P., Clemmensen I. Calcium-dependent binding of tetranectin to fibrin. Thromb Res. 1989 Jul 15;55(2):233–238. doi: 10.1016/0049-3848(89)90440-4. [DOI] [PubMed] [Google Scholar]
  21. Lookene A., Chevreuil O., Ostergaard P., Olivecrona G. Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics. Biochemistry. 1996 Sep 17;35(37):12155–12163. doi: 10.1021/bi960008e. [DOI] [PubMed] [Google Scholar]
  22. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  23. Margalit H., Fischer N., Ben-Sasson S. A. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem. 1993 Sep 15;268(26):19228–19231. [PubMed] [Google Scholar]
  24. Nielsen B. B., Kastrup J. S., Rasmussen H., Holtet T. L., Graversen J. H., Etzerodt M., Thøgersen H. C., Larsen I. K. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an alpha-helical coiled coil. FEBS Lett. 1997 Jul 28;412(2):388–396. doi: 10.1016/s0014-5793(97)00664-9. [DOI] [PubMed] [Google Scholar]
  25. Olson S. T., Björk I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991 Apr 5;266(10):6353–6364. [PubMed] [Google Scholar]
  26. Olson S. T., Halvorson H. R., Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991 Apr 5;266(10):6342–6352. [PubMed] [Google Scholar]
  27. Sørensen C. B., Berglund L., Petersen T. E. Cloning of a cDNA encoding murine tetranectin. Gene. 1995 Jan 23;152(2):243–245. doi: 10.1016/0378-1119(94)00703-u. [DOI] [PubMed] [Google Scholar]
  28. Thompson L. D., Pantoliano M. W., Springer B. A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry. 1994 Apr 5;33(13):3831–3840. doi: 10.1021/bi00179a006. [DOI] [PubMed] [Google Scholar]
  29. Wewer U. M., Albrechtsen R. Tetranectin, a plasminogen kringle 4-binding protein. Cloning and gene expression pattern in human colon cancer. Lab Invest. 1992 Aug;67(2):253–262. [PubMed] [Google Scholar]
  30. Wewer U. M., Iba K., Durkin M. E., Nielsen F. C., Loechel F., Gilpin B. J., Kuang W., Engvall E., Albrechtsen R. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro. Dev Biol. 1998 Aug 15;200(2):247–259. doi: 10.1006/dbio.1998.8962. [DOI] [PubMed] [Google Scholar]
  31. Wewer U. M., Ibaraki K., Schjørring P., Durkin M. E., Young M. F., Albrechtsen R. A potential role for tetranectin in mineralization during osteogenesis. J Cell Biol. 1994 Dec;127(6 Pt 1):1767–1775. doi: 10.1083/jcb.127.6.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES