Abstract
Tetanus neurotoxin (TeNT) is a powerful bacterial protein toxin that cleaves VAMP/synaptobrevin, an essential protein of the synaptic vesicle fusion machinery, and consequently blocks neurotransmission. The extreme neurospecificity of TeNT is determined by the binding of its C-terminal domain (fragment C or H(C)) to neuronal receptors. Whereas polysialogangliosides are known acceptors for the toxin, the existence of additional protein receptors has also been suggested. We have reported previously on a 15 kDa cell-surface glycoprotein that interacts with TeNT in neuronal cell lines and motoneurons [Herreros, Lalli, Montecucco and Schiavo (2000) J. Neurochem., in the press]. Here, on the basis of the structural information provided by the crystallization of fragment C of TeNT, we have expressed its C-and N-terminal halves as recombinant proteins and analysed their binding abilities to rat phaeochromocytoma (PC12) cells differentiated with nerve growth factor. We found that the C-terminal subdomain of the fragment C of TeNT is necessary and sufficient for cell binding and for the interaction with the 15 kDa putative receptor. In contrast, the N-terminal half showed a very poor interaction with the cell surface. These results restrict the binding domain of TeNT to the C-terminal half of the fragment C and highlight the importance of this domain for the neurospecific interaction of the toxin with the synapse. Furthermore, these findings support the use of this portion of TeNT as a neurospecific targeting device, pointing to an involvement of the N-terminal subdomain in later steps of the intoxication pathway.
Full Text
The Full Text of this article is available as a PDF (208.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakry N., Kamata Y., Sorensen R., Simpson L. L. Tetanus toxin and neuronal membranes: the relationship between binding and toxicity. J Pharmacol Exp Ther. 1991 Aug;258(2):613–619. [PubMed] [Google Scholar]
- Bizzini B., Stoeckel K., Schwab M. An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem. 1977 Mar;28(3):529–542. doi: 10.1111/j.1471-4159.1977.tb10423.x. [DOI] [PubMed] [Google Scholar]
- Evinger C., Erichsen J. T. Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Brain Res. 1986 Aug 20;380(2):383–388. doi: 10.1016/0006-8993(86)90241-6. [DOI] [PubMed] [Google Scholar]
- Fiedler K., Simons K. Characterization of VIP36, an animal lectin homologous to leguminous lectins. J Cell Sci. 1996 Jan;109(Pt 1):271–276. doi: 10.1242/jcs.109.1.271. [DOI] [PubMed] [Google Scholar]
- Halpern J. L., Loftus A. Characterization of the receptor-binding domain of tetanus toxin. J Biol Chem. 1993 May 25;268(15):11188–11192. [PubMed] [Google Scholar]
- Halpern J. L., Neale E. A. Neurospecific binding, internalization, and retrograde axonal transport. Curr Top Microbiol Immunol. 1995;195:221–241. doi: 10.1007/978-3-642-85173-5_10. [DOI] [PubMed] [Google Scholar]
- Itin C., Roche A. C., Monsigny M., Hauri H. P. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol Biol Cell. 1996 Mar;7(3):483–493. doi: 10.1091/mbc.7.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaelin W. G., Jr, Krek W., Sellers W. R., DeCaprio J. A., Ajchenbaum F., Fuchs C. S., Chittenden T., Li Y., Farnham P. J., Blanar M. A. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell. 1992 Jul 24;70(2):351–364. doi: 10.1016/0092-8674(92)90108-o. [DOI] [PubMed] [Google Scholar]
- Lacy D. B., Tepp W., Cohen A. C., DasGupta B. R., Stevens R. C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998 Oct;5(10):898–902. doi: 10.1038/2338. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lalli G., Herreros J., Osborne S. L., Montecucco C., Rossetto O., Schiavo G. Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci. 1999 Aug;112(Pt 16):2715–2724. doi: 10.1242/jcs.112.16.2715. [DOI] [PubMed] [Google Scholar]
- Ledoux D. N., Be X. H., Singh B. R. Quaternary structure of botulinum and tetanus neurotoxins as probed by chemical cross-linking and native gel electrophoresis. Toxicon. 1994 Sep;32(9):1095–1104. doi: 10.1016/0041-0101(94)90393-x. [DOI] [PubMed] [Google Scholar]
- Montecucco C., Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995 Nov;28(4):423–472. doi: 10.1017/s0033583500003292. [DOI] [PubMed] [Google Scholar]
- Niemann H., Blasi J., Jahn R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 1994 May;4(5):179–185. doi: 10.1016/0962-8924(94)90203-8. [DOI] [PubMed] [Google Scholar]
- Parton R. G., Ockleford C. D., Critchley D. R. Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res. 1988 Dec 13;475(1):118–127. doi: 10.1016/0006-8993(88)90204-1. [DOI] [PubMed] [Google Scholar]
- Pierce E. J., Davison M. D., Parton R. G., Habig W. H., Critchley D. R. Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J. 1986 Jun 15;236(3):845–852. doi: 10.1042/bj2360845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandberg K., Berry C. J., Rogers T. B. Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. Binding, internalization, and inhibition of acetylcholine release. J Biol Chem. 1989 Apr 5;264(10):5679–5686. [PubMed] [Google Scholar]
- Schiavo G., Ferrari G., Rossetto O., Montecucco C. Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Lett. 1991 Sep 23;290(1-2):227–230. doi: 10.1016/0014-5793(91)81266-b. [DOI] [PubMed] [Google Scholar]
- Schröder S., Schimmöller F., Singer-Krüger B., Riezman H. The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP. J Cell Biol. 1995 Nov;131(4):895–912. doi: 10.1083/jcb.131.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwab M., Agid Y., Glowinski J., Thoenen H. Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum. Brain Res. 1977 May 6;126(2):211–224. doi: 10.1016/0006-8993(77)90722-3. [DOI] [PubMed] [Google Scholar]
- Shapiro R. E., Specht C. D., Collins B. E., Woods A. S., Cotter R. J., Schnaar R. L. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J Biol Chem. 1997 Nov 28;272(48):30380–30386. doi: 10.1074/jbc.272.48.30380. [DOI] [PubMed] [Google Scholar]
- Soldati T., Perriard J. C. Intracompartmental sorting of essential myosin light chains: molecular dissection and in vivo monitoring by epitope tagging. Cell. 1991 Jul 26;66(2):277–289. doi: 10.1016/0092-8674(91)90618-9. [DOI] [PubMed] [Google Scholar]
- Umland T. C., Wingert L. M., Swaminathan S., Furey W. F., Schmidt J. J., Sax M. Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat Struct Biol. 1997 Oct;4(10):788–792. doi: 10.1038/nsb1097-788. [DOI] [PubMed] [Google Scholar]
- Yavin E., Nathan A. Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. Eur J Biochem. 1986 Jan 15;154(2):403–407. doi: 10.1111/j.1432-1033.1986.tb09412.x. [DOI] [PubMed] [Google Scholar]