Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 1;347(Pt 1):205–209.

Novel inhibitors of the condensing enzymes of the type II fatty acid synthase of pea (Pisum sativum).

A L Jones 1, D Herbert 1, A J Rutter 1, J E Dancer 1, J L Harwood 1
PMCID: PMC1220949  PMID: 10727420

Abstract

The type II fatty acid synthases (FASs) of higher plants (and Escherichia coli) contain three condensing enzymes called beta-ketoacyl-ACP synthases (KAS), where ACP is acyl-carrier-protein. We have used novel derivatives of the antibiotic thiolactomycin to inhibit these enzymes. Overall de novo fatty acid biosynthesis was measured using [1-(14)C]acetate substrate and chloroplast preparations from pea leaves, and [1-(14)C]laurate was used to distinguish between the effects of the inhibitors on KAS I from those on KAS II. In addition, the activities of these enzymes, together with the short-chain condensing enzyme, KAS III, were measured directly. Six analogues were tested and two, both with extended hydrocarbon side chains, were found to be more effective inhibitors than thiolactomycin. Incubations with chloroplasts and direct assay of the individual condensing enzymes showed that all three compounds inhibited the pea FAS condensing enzymes in the order KAS II > KAS I > KAS III. These results demonstrate the general activity of thiolactomycin and its derivatives against these FAS condensation reactions, and suggest that such compounds will be useful for further detailed studies of inhibition and for use as pharmaceuticals against Type II FASs of pathogens.

Full Text

The Full Text of this article is available as a PDF (104.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GARBUS J., DELUCA H. F., LOOMANS M. E., STRONG F. M. The rapid incorporation of phosphate into mitochondrial lipids. J Biol Chem. 1963 Jan;238:59–63. [PubMed] [Google Scholar]
  3. Gulliver B. S., Slabas A. R. Acetoacyl-acyl carrier protein synthase from avocado: its purification, characterisation and clear resolution from acetyl CoA:ACP transacylase. Plant Mol Biol. 1994 May;25(2):179–191. doi: 10.1007/BF00023236. [DOI] [PubMed] [Google Scholar]
  4. Harwood J. L. Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta. 1996 May 31;1301(1-2):7–56. doi: 10.1016/0005-2760(95)00242-1. [DOI] [PubMed] [Google Scholar]
  5. Jackowski S., Rock C. O. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem. 1987 Jun 5;262(16):7927–7931. [PubMed] [Google Scholar]
  6. Jaworski J. G., Clough R. C., Barnum S. R. A Cerulenin Insensitive Short Chain 3-Ketoacyl-Acyl Carrier Protein Synthase in Spinacia oleracea Leaves. Plant Physiol. 1989 May;90(1):41–44. doi: 10.1104/pp.90.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones A. L., Dancer J. E., Harwood J. L. The effect of thiolactomycin analogues on fatty acid synthesis in peas (Pisum sativum cv. Onward). Biochem Soc Trans. 1994 Aug;22(3):258S–258S. doi: 10.1042/bst022258s. [DOI] [PubMed] [Google Scholar]
  8. Moche M., Schneider G., Edwards P., Dehesh K., Lindqvist Y. Structure of the complex between the antibiotic cerulenin and its target, beta-ketoacyl-acyl carrier protein synthase. J Biol Chem. 1999 Mar 5;274(10):6031–6034. doi: 10.1074/jbc.274.10.6031. [DOI] [PubMed] [Google Scholar]
  9. Nishida I., Kawaguchi A., Yamada M. Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J Biochem. 1986 May;99(5):1447–1454. doi: 10.1093/oxfordjournals.jbchem.a135614. [DOI] [PubMed] [Google Scholar]
  10. Rock C. O., Cronan J. E., Jr Acyl-acyl carrier protein synthetase from Escherichia coli. Methods Enzymol. 1981;71(Pt 100):163–168. doi: 10.1016/0076-6879(81)71023-1. [DOI] [PubMed] [Google Scholar]
  11. Rock C. O., Garwin J. L., Cronan J. E., Jr Preparative enzymatic synthesis of acyl-acyl carrier protein. Methods Enzymol. 1981;72:397–403. doi: 10.1016/s0076-6879(81)72029-9. [DOI] [PubMed] [Google Scholar]
  12. Shimakata T., Stumpf P. K. Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808–5812. doi: 10.1073/pnas.79.19.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shimakata T., Stumpf P. K. Purification and characterization of beta-ketoacyl-ACP synthetase I from Spinacia oleracea leaves. Arch Biochem Biophys. 1983 Jan;220(1):39–45. doi: 10.1016/0003-9861(83)90384-3. [DOI] [PubMed] [Google Scholar]
  14. Verwoert I. I., Verbree E. C., van der Linden K. H., Nijkamp H. J., Stuitje A. R. Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol. 1992 May;174(9):2851–2857. doi: 10.1128/jb.174.9.2851-2857.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Walker K. A., Harwood J. L. Localization of chloroplastic fatty acid synthesis de novo in the stroma. Biochem J. 1985 Mar 1;226(2):551–556. doi: 10.1042/bj2260551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Waller R. F., Keeling P. J., Donald R. G., Striepen B., Handman E., Lang-Unnasch N., Cowman A. F., Besra G. S., Roos D. S., McFadden G. I. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12352–12357. doi: 10.1073/pnas.95.21.12352. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES