Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 1;347(Pt 1):291–295.

Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms.

A L Levonen 1, R Lapatto 1, M Saksela 1, K O Raivio 1
PMCID: PMC1220959  PMID: 10727430

Abstract

Cystathionine gamma-lyase (CGL) is the last enzyme of the trans-sulphuration pathway, which converts methionine into cysteine. To study the possible differences in enzymic activity of the two human cystathionine gamma-lyase isoforms characterized earlier, these were separately expressed in human kidney embryonic 293T cells. Furthermore, developmental changes in the expression of the two mRNA forms as well as the enzymic activity in human liver were studied, as it has been postulated that a change in the relative expression of CGL isoforms causes the postnatal increase in CGL activity. Transfection with the longer isoform increased the CGL activity 1.5-fold, while the activity of the cells transfected with the shorter form did not differ from the basal activity. In human liver samples, CGL activity was only detected in adult tissue (68+/-9 nmol of cysteine/h per mg of protein), whereas activity in fetal, premature and full-term neonatal liver tissue was undetectable. In contrast, strong mRNA expression of both mRNA isoforms was detected from the 19th gestational week onwards and the longer form of CGL appeared to be predominant. The expression of the two mRNA forms varied in parallel. In conclusion, we have shown that only cells overexpressing the longer form of CGL have increased activity, and CGL appears to be regulated at the post-transcriptional level during development.

Full Text

The Full Text of this article is available as a PDF (147.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Clausen T., Huber R., Laber B., Pohlenz H. D., Messerschmidt A. Crystal structure of the pyridoxal-5'-phosphate dependent cystathionine beta-lyase from Escherichia coli at 1.83 A. J Mol Biol. 1996 Sep 20;262(2):202–224. doi: 10.1006/jmbi.1996.0508. [DOI] [PubMed] [Google Scholar]
  4. Clausen T., Huber R., Prade L., Wahl M. C., Messerschmidt A. Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5 A resolution. EMBO J. 1998 Dec 1;17(23):6827–6838. doi: 10.1093/emboj/17.23.6827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  6. Das A. T., Salvadó J., Boon L., Biharie G., Moorman A. F., Lamers W. H. Regulation of glutamate dehydrogenase expression in the developing rat liver: control at different levels in the prenatal period. Eur J Biochem. 1996 Feb 1;235(3):677–682. doi: 10.1111/j.1432-1033.1996.00677.x. [DOI] [PubMed] [Google Scholar]
  7. Erickson P. F., Maxwell I. H., Su L. J., Baumann M., Glode L. M. Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem J. 1990 Jul 15;269(2):335–340. doi: 10.1042/bj2690335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaull G., Sturman J. A., Räihä N. C. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatr Res. 1972 Jun;6(6):538–547. doi: 10.1203/00006450-197206000-00002. [DOI] [PubMed] [Google Scholar]
  9. Greengard O. Enzymic differentiation of human liver: comparison with the rat model. Pediatr Res. 1977 May;11(5):669–676. doi: 10.1203/00006450-197705000-00009. [DOI] [PubMed] [Google Scholar]
  10. Heinonen K. Studies on cystathionase activity in rat liver and brain during development. Effects of hormones and amino acids in vivo. Biochem J. 1973 Dec;136(4):1011–1015. doi: 10.1042/bj1361011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hryb D. J., Feigelson M. Histidase mRNA. Nature of translational products, tissue specificity, and differential development in male and female rat liver. J Biol Chem. 1983 Sep 25;258(18):11377–11383. [PubMed] [Google Scholar]
  12. Lu Y., O'Dowd B. F., Orrego H., Israel Y. Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine gamma-lyase. Biochem Biophys Res Commun. 1992 Dec 15;189(2):749–758. doi: 10.1016/0006-291x(92)92265-y. [DOI] [PubMed] [Google Scholar]
  13. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  14. Morreau H., Galjart N. J., Gillemans N., Willemsen R., van der Horst G. T., d'Azzo A. Alternative splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-galactosidase-related protein. J Biol Chem. 1989 Dec 5;264(34):20655–20663. [PubMed] [Google Scholar]
  15. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Müller G., Ruppert S., Schmid E., Schütz G. Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J. 1988 Sep;7(9):2723–2730. doi: 10.1002/j.1460-2075.1988.tb03126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pallardo F. V., Sastre J., Asensi M., Rodrigo F., Estrela J. M., Viña J. Physiological changes in glutathione metabolism in foetal and newborn rat liver. Biochem J. 1991 Mar 15;274(Pt 3):891–893. doi: 10.1042/bj2740891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pascal T. A., Gillam B. M., Gaull G. E. Cystathionase: immunochemical evidence for absence from human fetal liver. Pediatr Res. 1972 Oct;6(10):773–778. doi: 10.1203/00006450-197210000-00005. [DOI] [PubMed] [Google Scholar]
  19. ROSE W. C., WIXOM R. L. The amino acid requirements of man. XIII. The sparing effect of cystine on the methionine requirement. J Biol Chem. 1955 Oct;216(2):753–773. [PubMed] [Google Scholar]
  20. Rao A. M., Drake M. R., Stipanuk M. H. Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes. J Nutr. 1990 Aug;120(8):837–845. doi: 10.1093/jn/120.8.837. [DOI] [PubMed] [Google Scholar]
  21. Reed D. J., Orrenius S. The role of methionine in glutathione biosynthesis by isolated hepatocytes. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1257–1264. doi: 10.1016/s0006-291x(77)80115-0. [DOI] [PubMed] [Google Scholar]
  22. Roper M. D., Kraus J. P. Rat cystathionine beta-synthase: expression of four alternatively spliced isoforms in transfected cultured cells. Arch Biochem Biophys. 1992 Nov 1;298(2):514–521. doi: 10.1016/0003-9861(92)90443-z. [DOI] [PubMed] [Google Scholar]
  23. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  24. Sharp P. A., Burge C. B. Classification of introns: U2-type or U12-type. Cell. 1997 Dec 26;91(7):875–879. doi: 10.1016/s0092-8674(00)80479-1. [DOI] [PubMed] [Google Scholar]
  25. Steegborn C., Clausen T., Sondermann P., Jacob U., Worbs M., Marinkovic S., Huber R., Wahl M. C. Kinetics and inhibition of recombinant human cystathionine gamma-lyase. Toward the rational control of transsulfuration. J Biol Chem. 1999 Apr 30;274(18):12675–12684. doi: 10.1074/jbc.274.18.12675. [DOI] [PubMed] [Google Scholar]
  26. Steegborn C., Messerschmidt A., Laber B., Streber W., Huber R., Clausen T. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum reveals its substrate and reaction specificity. J Mol Biol. 1999 Jul 30;290(5):983–996. doi: 10.1006/jmbi.1999.2935. [DOI] [PubMed] [Google Scholar]
  27. Sturman J. A., Gaull G., Raiha N. C. Absence of cystathionase in human fetal liver: is cystine essential? Science. 1970 Jul 3;169(3940):74–76. doi: 10.1126/science.169.3940.74. [DOI] [PubMed] [Google Scholar]
  28. Viña J., Vento M., García-Sala F., Puertes I. R., Gascó E., Sastre J., Asensi M., Pallardó F. V. L-cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. Am J Clin Nutr. 1995 May;61(5):1067–1069. doi: 10.1093/ajcn/61.4.1067. [DOI] [PubMed] [Google Scholar]
  29. de Groot C. J., Zonneveld D., de Laaf R. T., Dingemanse M. A., Mooren P. G., Moorman A. F., Lamers W. H., Charles R. Developmental and hormonal regulation of carbamoyl-phosphate synthase gene expression in rat liver: evidence for control mechanisms at different levels in the perinatal period. Biochim Biophys Acta. 1986 Feb 24;866(1):61–67. doi: 10.1016/0167-4781(86)90101-6. [DOI] [PubMed] [Google Scholar]
  30. de Groot C. J., ten Voorde G. H., van Andel R. E., te Kortschot A., Gaasbeek Janzen J. W., Wilson R. H., Moorman A. F., Charles R., Lamers W. H. Reciprocal regulation of glutamine synthetase and carbamoylphosphate synthetase levels in rat liver. Biochim Biophys Acta. 1987 Apr 29;908(3):231–240. doi: 10.1016/0167-4781(87)90103-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES