Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 15;347(Pt 2):339–348. doi: 10.1042/0264-6021:3470339

Increased incidence of unsulphated and 4-sulphated residues in the chondroitin sulphate linkage region observed by high-pH anion-exchange chromatography.

R M Lauder 1, T N Huckerby 1, I A Nieduszynski 1
PMCID: PMC1220964  PMID: 10749661

Abstract

We report the isolation, characterization and quantification of five octasaccharides, four hexasaccharides and two tetrasaccharides, derived from the chondroitin sulphate (CS) linkage region of 6-8-year-old bovine articular cartilage aggrecan, following digestion with chondroitin ABC endolyase. Using a novel high-pH anion-exchange chromatography (HPAEC) method, in conjunction with one- and two-dimensional (1)H-NMR spectroscopy, we have identified the following basic structure for the CS linkage region of aggrecan: DeltaUA(beta1-3)GalNAc[0S/4S/6S](beta1-4)GlcA(beta1-3)GalNAc[0S/4S/6S](beta1-4)GlcA(beta1-3)Gal[0S/6S](beta1-3)Gal(beta1-4)Xyl, where DeltaUA represents 4,5-unsaturated hexuronic acid, and 4S and 6S represent an O-ester sulphate group on C-4 and C-6 respectively. The octa-, hexa- and tetra-saccharide linkage region fragments were used to develop a HPAEC fingerprinting method, with detection at A(232 nm), and a linear response to approx. 0.1 nmol of substance. The sulphation patterns of CS linkage regions, of up to octasaccharide in size, from articular and tracheal cartilage aggrecan were examined. The results show that in articular cartilage, for the majority (53%) of octasaccharides the 2-deoxy-2-N-acetyl amino-D-galactose (GalNAc) residues closest to the linkage region are both 6-sulphated; however, in a significant portion (34%), one or more of these GalNAc residues are unsulphated, and in 8% both are unsulphated. Approximately 10-18% of the chains have a 4-sulphated GalNAc in the first disaccharide, and 12% have a sulphated linkage region Gal residue. No evidence was found for uronic acid sulphation. These data show that there is a significant increase in the incidence of unsulphated and 4-sulphated GalNAc residues adjacent to the linkage region compared with the rest of the chain. Bovine tracheal cartilage linkage regions displayed very similar sulphation profiles to those from articular cartilage, despite the presence of a higher level of GalNAc 4-sulphation within the repeat region of the main CS chain.

Full Text

The Full Text of this article is available as a PDF (213.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
  2. Chai W., Lawson A. M., Gradwell M. J., Kogelberg H. Structural characterisation of two hexasaccharides and an octasaccharide from chondroitin sulphate C containing the unusual sequence (4-sulpho)-N-acetylgalactosamine-beta1-4-(2-sulpho)-glucuronic acid-beta1-3-(6-sulpho)-N-acetylgalactosamine. Eur J Biochem. 1998 Jan 15;251(1-2):114–121. doi: 10.1046/j.1432-1327.1998.2510114.x. [DOI] [PubMed] [Google Scholar]
  3. Cheng F., Heinegârd D., Fransson L., Bayliss M., Bielicki J., Hopwood J., Yoshida K. Variations in the chondroitin sulfate-protein linkage region of aggrecans from bovine nasal and human articular cartilages. J Biol Chem. 1996 Nov 8;271(45):28572–28580. doi: 10.1074/jbc.271.45.28572. [DOI] [PubMed] [Google Scholar]
  4. Cheng F., Yoshida K., Heinegård D., Fransson L. A. A new method for sequence analysis of glycosaminoglycans from heavily substituted proteoglycans reveals non-random positioning of 4- and 6-O-sulphated N-acetylgalactosamine in aggrecan-derived chondroitin sulphate. Glycobiology. 1992 Dec;2(6):553–561. doi: 10.1093/glycob/2.6.553. [DOI] [PubMed] [Google Scholar]
  5. Cooke B. M., Rogerson S. J., Brown G. V., Coppel R. L. Adhesion of malaria-infected red blood cells to chondroitin sulfate A under flow conditions. Blood. 1996 Nov 15;88(10):4040–4044. [PubMed] [Google Scholar]
  6. Doege K., Chen X., Cornuet P. K., Hassell J. Non-glycosaminoglycan bearing domains of perlecan and aggrecan influence the utilization of sites for heparan and chondroitin sulfate synthesis. Matrix Biol. 1997 Oct;16(4):211–221. doi: 10.1016/s0945-053x(97)90010-x. [DOI] [PubMed] [Google Scholar]
  7. Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  8. Fried M., Duffy P. E. Maternal malaria and parasite adhesion. J Mol Med (Berl) 1998 Mar;76(3-4):162–171. doi: 10.1007/s001090050205. [DOI] [PubMed] [Google Scholar]
  9. Fritz T. A., Lugemwa F. N., Sarkar A. K., Esko J. D. Biosynthesis of heparan sulfate on beta-D-xylosides depends on aglycone structure. J Biol Chem. 1994 Jan 7;269(1):300–307. [PubMed] [Google Scholar]
  10. Garcia-Casado G., Collada C., Allona I., Casado R., Pacios L. F., Aragoncillo C., Gomez L. Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology. 1998 Oct;8(10):1021–1028. doi: 10.1093/glycob/8.10.1021. [DOI] [PubMed] [Google Scholar]
  11. Hamai A., Hashimoto N., Mochizuki H., Kato F., Makiguchi Y., Horie K., Suzuki S. Two distinct chondroitin sulfate ABC lyases. An endoeliminase yielding tetrasaccharides and an exoeliminase preferentially acting on oligosaccharides. J Biol Chem. 1997 Apr 4;272(14):9123–9130. doi: 10.1074/jbc.272.14.9123. [DOI] [PubMed] [Google Scholar]
  12. Heinegård D., Axelsson I. Distribution of keratan sulfate in cartilage proteoglycans. J Biol Chem. 1977 Mar 25;252(6):1971–1979. [PubMed] [Google Scholar]
  13. Herndon M. E., Lander A. D. A diverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system. Neuron. 1990 Jun;4(6):949–961. doi: 10.1016/0896-6273(90)90148-9. [DOI] [PubMed] [Google Scholar]
  14. Huckerby T. N., Lauder R. M., Nieduszynski I. A. Structure determination for octasaccharides derived from the carbohydrate-protein linkage region of chondroitin sulphate chains in the proteoglycan aggrecan from bovine articular cartilage. Eur J Biochem. 1998 Dec 1;258(2):669–676. doi: 10.1046/j.1432-1327.1998.2580669.x. [DOI] [PubMed] [Google Scholar]
  15. Ii T., Kubota M., Hirano T., Ohashi M., Yoshida K., Suzuki S. FAB CID-MS/MS characterization of tetrasaccharide tri- and tetrasulfate derived from the antigenic determinant recognized by the anti-chondroitin sulfate monoclonal antibody MO-225. Glycoconj J. 1995 Jun;12(3):282–289. doi: 10.1007/BF00731331. [DOI] [PubMed] [Google Scholar]
  16. Lauder R. M., Huckerby T. N., Nieduszynski I. A. Structure of the keratan sulphate chains attached to fibromodulin isolated from bovine tracheal cartilage. Oligosaccharides generated by keratanase digestion. Biochem J. 1994 Sep 1;302(Pt 2):417–423. doi: 10.1042/bj3020417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lyon M., Deakin J. A., Gallagher J. T. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994 Apr 15;269(15):11208–11215. [PubMed] [Google Scholar]
  18. Margolis R. U., Margolis R. K. Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res. 1997 Nov;290(2):343–348. doi: 10.1007/s004410050939. [DOI] [PubMed] [Google Scholar]
  19. Mark M. P., Baker J. R., Kimata K., Ruch J. V. Regulated changes in chondroitin sulfation during embryogenesis: an immunohistochemical approach. Int J Dev Biol. 1990 Mar;34(1):191–204. [PubMed] [Google Scholar]
  20. Midura R. J., Calabro A., Yanagishita M., Hascall V. C. Nonreducing end structures of chondroitin sulfate chains on aggrecan isolated from Swarm rat chondrosarcoma cultures. J Biol Chem. 1995 Apr 7;270(14):8009–8015. doi: 10.1074/jbc.270.14.8009. [DOI] [PubMed] [Google Scholar]
  21. Midura R. J., Salustri A., Calabro A., Yanagishita M., Hascall V. C. High-resolution separation of disaccharide and oligosaccharide alditols from chondroitin sulphate, dermatan sulphate and hyaluronan using CarboPac PA1 chromatography. Glycobiology. 1994 Jun;4(3):333–342. doi: 10.1093/glycob/4.3.333. [DOI] [PubMed] [Google Scholar]
  22. Mourão P. A., Pereira M. S., Pavão M. S., Mulloy B., Tollefsen D. M., Mowinckel M. C., Abildgaard U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem. 1996 Sep 27;271(39):23973–23984. doi: 10.1074/jbc.271.39.23973. [DOI] [PubMed] [Google Scholar]
  23. Nadanaka S., Clement A., Masayama K., Faissner A., Sugahara K. Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity. J Biol Chem. 1998 Feb 6;273(6):3296–3307. doi: 10.1074/jbc.273.6.3296. [DOI] [PubMed] [Google Scholar]
  24. Nadanaka S., Sugahara K. The unusual tetrasaccharide sequence GlcA beta 1-3GalNAc(4-sulfate)beta 1-4GlcA(2-sulfate)beta 1-3GalNAc(6-sulfate) found in the hexasaccharides prepared by testicular hyaluronidase digestion of shark cartilage chondroitin sulfate D. Glycobiology. 1997 Mar;7(2):253–263. doi: 10.1093/glycob/7.2.253. [DOI] [PubMed] [Google Scholar]
  25. Pangalos M. N., Shioi J., Efthimiopoulos S., Wu A., Robakis N. K. Characterization of appican, the chondroitin sulfate proteoglycan form of the Alzheimer amyloid precursor protein. Neurodegeneration. 1996 Dec;5(4):445–451. doi: 10.1006/neur.1996.0061. [DOI] [PubMed] [Google Scholar]
  26. Plaas A. H., West L. A., Wong-Palms S., Nelson F. R. Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J Biol Chem. 1998 May 15;273(20):12642–12649. doi: 10.1074/jbc.273.20.12642. [DOI] [PubMed] [Google Scholar]
  27. Plaas A. H., Wong-Palms S., Roughley P. J., Midura R. J., Hascall V. C. Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J Biol Chem. 1997 Aug 15;272(33):20603–20610. doi: 10.1074/jbc.272.33.20603. [DOI] [PubMed] [Google Scholar]
  28. Sarkar A. K., Esko J. D. Synthesis and glycosaminoglycan priming activity of three disaccharides related to the linkage region tetrasaccharide of proteoglycans. Carbohydr Res. 1995 Dec 27;279:161–171. doi: 10.1016/0008-6215(95)00304-5. [DOI] [PubMed] [Google Scholar]
  29. Shibata S., Midura R. J., Hascall V. C. Structural analysis of the linkage region oligosaccharides and unsaturated disaccharides from chondroitin sulfate using CarboPac PA1. J Biol Chem. 1992 Apr 5;267(10):6548–6555. [PubMed] [Google Scholar]
  30. Sugahara K., Ohi Y., Harada T., de Waard P., Vliegenthart J. F. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. I. Six compounds containing 0 or 1 sulfate and/or phosphate residues. J Biol Chem. 1992 Mar 25;267(9):6027–6035. [PubMed] [Google Scholar]
  31. Sugahara K., Ohkita Y., Shibata Y., Yoshida K., Ikegami A. Structural studies on the hexasaccharide alditols isolated from the carbohydrate-protein linkage region of dermatan sulfate proteoglycans of bovine aorta. Demonstration of iduronic acid-containing components. J Biol Chem. 1995 Mar 31;270(13):7204–7212. doi: 10.1074/jbc.270.13.7204. [DOI] [PubMed] [Google Scholar]
  32. Sugahara K., Tanaka Y., Yamada S., Seno N., Kitagawa H., Haslam S. M., Morris H. R., Dell A. Novel sulfated oligosaccharides containing 3-O-sulfated glucuronic acid from king crab cartilage chondroitin sulfate K. Unexpected degradation by chondroitinase ABC. J Biol Chem. 1996 Oct 25;271(43):26745–26754. doi: 10.1074/jbc.271.43.26745. [DOI] [PubMed] [Google Scholar]
  33. Sugahara K., Yamada S., Yoshida K., de Waard P., Vliegenthart J. F. A novel sulfated structure in the carbohydrate-protein linkage region isolated from porcine intestinal heparin. J Biol Chem. 1992 Jan 25;267(3):1528–1533. [PubMed] [Google Scholar]
  34. Thornton D. J., Morris H. G., Cockin G. H., Huckerby T. N., Nieduszynski I. A., Carlstedt I., Hardingham T. E., Ratcliffe A. Structural and immunological studies of keratan sulphates from mature bovine articular cartilage. Biochem J. 1989 May 15;260(1):277–282. doi: 10.1042/bj2600277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]
  36. Zhang L., Esko J. D. Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem. 1994 Jul 29;269(30):19295–19299. [PubMed] [Google Scholar]
  37. de Beer T., Inui A., Tsuda H., Sugahara K., Vliegenthart J. F. Polydispersity in sulfation profile of oligosaccharide alditols isolated from the protein-linkage region and the repeating disaccharide region of chondroitin 4-sulfate of bovine nasal septal cartilage. Eur J Biochem. 1996 Sep 15;240(3):789–797. doi: 10.1111/j.1432-1033.1996.0789h.x. [DOI] [PubMed] [Google Scholar]
  38. de Waard P., Vliegenthart J. F., Harada T., Sugahara K. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. II. Seven compounds containing 2 or 3 sulfate residues. J Biol Chem. 1992 Mar 25;267(9):6036–6043. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES