Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 15;347(Pt 2):399–406. doi: 10.1042/0264-6021:3470399

Glucose and amino acids modulate translation factor activation by growth factors in PC12 cells.

M Kleijn 1, C G Proud 1
PMCID: PMC1220972  PMID: 10749669

Abstract

In PC12 phaeochromocytoma cells, protein synthesis is activated by epidermal and nerve growth factors (EGF and NGF). EGF and NGF also regulate a number of components of the translational machinery in these cells. Here we show that the ability of EGF and NGF to induce the phosphorylation of the 70 kDa ribosomal protein, S6 kinase, and the eukaryotic initiation factor (eIF), 4E-binding protein 1, is dependent upon the presence of amino acids (but not glucose) in the medium. This resembles the regulation of these proteins by insulin, which also requires amino acids. Glucose, but not amino acids, is required for the activation of eIF2B by EGF and NGF. In contrast, EGF and NGF can still activate protein synthesis in the absence of nutrients, suggesting that other regulatory events are important in this. In nutrient-deprived cells, an increase in the phosphorylation of eIF4E, and the assembly of the eIF4F complex by EGF and NGF, coincided with the activation of protein synthesis. In serum-starved cells, activation of protein synthesis, phosphorylation of eIF4E, and formation of the eIF4F complex, were blocked by inhibition of MEK, a component of the extracellular regulated kinase (ERK) signalling pathway. Thus the ERK pathway plays a key role in the regulation of protein synthesis in PC12 cells.

Full Text

The Full Text of this article is available as a PDF (234.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaldi F., Pierandrei-Amaldi P. TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog Mol Subcell Biol. 1997;18:1–17. doi: 10.1007/978-3-642-60471-3_1. [DOI] [PubMed] [Google Scholar]
  2. Andjelković M., Suidan H. S., Meier R., Frech M., Alessi D. R., Hemmings B. A. Nerve growth factor promotes activation of the alpha, beta and gamma isoforms of protein kinase B in PC12 pheochromocytoma cells. Eur J Biochem. 1998 Jan 15;251(1-2):195–200. doi: 10.1046/j.1432-1327.1998.2510195.x. [DOI] [PubMed] [Google Scholar]
  3. Berlanga J. J., Santoyo J., De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem. 1999 Oct;265(2):754–762. doi: 10.1046/j.1432-1327.1999.00780.x. [DOI] [PubMed] [Google Scholar]
  4. Brunn G. J., Williams J., Sabers C., Wiederrecht G., Lawrence J. C., Jr, Abraham R. T. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 1996 Oct 1;15(19):5256–5267. [PMC free article] [PubMed] [Google Scholar]
  5. Burnett P. E., Barrow R. K., Cohen N. A., Snyder S. H., Sabatini D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432–1437. doi: 10.1073/pnas.95.4.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell L. E., Wang X., Proud C. G. Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem J. 1999 Dec 1;344(Pt 2):433–441. [PMC free article] [PubMed] [Google Scholar]
  7. Cross D. A., Alessi D. R., Cohen P., Andjelkovich M., Hemmings B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21;378(6559):785–789. doi: 10.1038/378785a0. [DOI] [PubMed] [Google Scholar]
  8. Dardevet D., Sornet C., Vary T., Grizard J. Phosphatidylinositol 3-kinase and p70 s6 kinase participate in the regulation of protein turnover in skeletal muscle by insulin and insulin-like growth factor I. Endocrinology. 1996 Oct;137(10):4087–4094. doi: 10.1210/endo.137.10.8828461. [DOI] [PubMed] [Google Scholar]
  9. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Favata M. F., Horiuchi K. Y., Manos E. J., Daulerio A. J., Stradley D. A., Feeser W. S., Van Dyk D. E., Pitts W. J., Earl R. A., Hobbs F. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998 Jul 17;273(29):18623–18632. doi: 10.1074/jbc.273.29.18623. [DOI] [PubMed] [Google Scholar]
  11. Fox H. L., Pham P. T., Kimball S. R., Jefferson L. S., Lynch C. J. Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol. 1998 Nov;275(5 Pt 1):C1232–C1238. doi: 10.1152/ajpcell.1998.275.5.C1232. [DOI] [PubMed] [Google Scholar]
  12. Frederickson R. M., Mushynski W. E., Sonenberg N. Phosphorylation of translation initiation factor eIF-4E is induced in a ras-dependent manner during nerve growth factor-mediated PC12 cell differentiation. Mol Cell Biol. 1992 Mar;12(3):1239–1247. doi: 10.1128/mcb.12.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gingras A. C., Kennedy S. G., O'Leary M. A., Sonenberg N., Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998 Feb 15;12(4):502–513. doi: 10.1101/gad.12.4.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haghighat A., Mader S., Pause A., Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 1995 Nov 15;14(22):5701–5709. doi: 10.1002/j.1460-2075.1995.tb00257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hara K., Yonezawa K., Weng Q. P., Kozlowski M. T., Belham C., Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998 Jun 5;273(23):14484–14494. doi: 10.1074/jbc.273.23.14484. [DOI] [PubMed] [Google Scholar]
  16. Iiboshi Y., Papst P. J., Kawasome H., Hosoi H., Abraham R. T., Houghton P. J., Terada N. Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem. 1999 Jan 8;274(2):1092–1099. doi: 10.1074/jbc.274.2.1092. [DOI] [PubMed] [Google Scholar]
  17. Jefferies H. B., Fumagalli S., Dennis P. B., Reinhard C., Pearson R. B., Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997 Jun 16;16(12):3693–3704. doi: 10.1093/emboj/16.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimball S. R., Horetsky R. L., Jefferson L. S. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem. 1998 Nov 20;273(47):30945–30953. doi: 10.1074/jbc.273.47.30945. [DOI] [PubMed] [Google Scholar]
  19. Kimball S. R., Horetsky R. L., Jefferson L. S. Signal transduction pathways involved in the regulation of protein synthesis by insulin in L6 myoblasts. Am J Physiol. 1998 Jan;274(1 Pt 1):C221–C228. doi: 10.1152/ajpcell.1998.274.1.C221. [DOI] [PubMed] [Google Scholar]
  20. Kimball S. R., Shantz L. M., Horetsky R. L., Jefferson L. S. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999 Apr 23;274(17):11647–11652. doi: 10.1074/jbc.274.17.11647. [DOI] [PubMed] [Google Scholar]
  21. Kitamura T., Ogawa W., Sakaue H., Hino Y., Kuroda S., Takata M., Matsumoto M., Maeda T., Konishi H., Kikkawa U. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol. 1998 Jul;18(7):3708–3717. doi: 10.1128/mcb.18.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kleijn M., Korthout M. M., Voorma H. O., Thomas A. A. Phosphorylation of the eIF4E-binding protein PHAS-I after exposure of PC12 cells to EGF and NGF. FEBS Lett. 1996 Nov 4;396(2-3):165–171. doi: 10.1016/0014-5793(96)01097-6. [DOI] [PubMed] [Google Scholar]
  23. Kleijn M., Scheper G. C., Voorma H. O., Thomas A. A. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 1998 May 1;253(3):531–544. doi: 10.1046/j.1432-1327.1998.2530531.x. [DOI] [PubMed] [Google Scholar]
  24. Kleijn M., Voorma H. O., Thomas A. A. Phosphorylation of eIF-4E and initiation of protein synthesis in P19 embryonal carcinoma cells. J Cell Biochem. 1995 Dec;59(4):443–452. doi: 10.1002/jcb.240590405. [DOI] [PubMed] [Google Scholar]
  25. Kleijn M., Welsh G. I., Scheper G. C., Voorma H. O., Proud C. G., Thomas A. A. Nerve and epidermal growth factor induce protein synthesis and eIF2B activation in PC12 cells. J Biol Chem. 1998 Mar 6;273(10):5536–5541. doi: 10.1074/jbc.273.10.5536. [DOI] [PubMed] [Google Scholar]
  26. Lawrence J. C., Jr, Abraham R. T. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci. 1997 Sep;22(9):345–349. doi: 10.1016/s0968-0004(97)01101-8. [DOI] [PubMed] [Google Scholar]
  27. Lin T. A., Kong X., Haystead T. A., Pause A., Belsham G., Sonenberg N., Lawrence J. C., Jr PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994 Oct 28;266(5185):653–656. doi: 10.1126/science.7939721. [DOI] [PubMed] [Google Scholar]
  28. Mader S., Lee H., Pause A., Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995 Sep;15(9):4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Minich W. B., Balasta M. L., Goss D. J., Rhoads R. E. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7668–7672. doi: 10.1073/pnas.91.16.7668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moule S. K., Edgell N. J., Welsh G. I., Diggle T. A., Foulstone E. J., Heesom K. J., Proud C. G., Denton R. M. Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J. 1995 Oct 15;311(Pt 2):595–601. doi: 10.1042/bj3110595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mèndez R., Myers M. G., Jr, White M. F., Rhoads R. E. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol. 1996 Jun;16(6):2857–2864. doi: 10.1128/mcb.16.6.2857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pain V. M., Henshaw E. C. Initiation of protein synthesis in Ehrlich ascites tumour cells. Evidence for physiological variation in the association of methionyl-tRNAf with native 40-S ribosomal subunits in vivo. Eur J Biochem. 1975 Sep 15;57(2):335–342. doi: 10.1111/j.1432-1033.1975.tb02306.x. [DOI] [PubMed] [Google Scholar]
  33. Patti M. E., Brambilla E., Luzi L., Landaker E. J., Kahn C. R. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998 Apr 1;101(7):1519–1529. doi: 10.1172/JCI1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pause A., Belsham G. J., Gingras A. C., Donzé O., Lin T. A., Lawrence J. C., Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature. 1994 Oct 27;371(6500):762–767. doi: 10.1038/371762a0. [DOI] [PubMed] [Google Scholar]
  35. Permutt M. A. Effect of glucose on initiation and elongation rates in isolated rat pancreatic islets. J Biol Chem. 1974 May 10;249(9):2738–2742. [PubMed] [Google Scholar]
  36. Poulin F., Gingras A. C., Olsen H., Chevalier S., Sonenberg N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem. 1998 May 29;273(22):14002–14007. doi: 10.1074/jbc.273.22.14002. [DOI] [PubMed] [Google Scholar]
  37. Rao G. N., Madamanchi N. R., Lele M., Gadiparthi L., Gingras A. C., Eling T. E., Sonenberg N. A potential role for extracellular signal-regulated kinases in prostaglandin F2alpha-induced protein synthesis in smooth muscle cells. J Biol Chem. 1999 Apr 30;274(18):12925–12932. doi: 10.1074/jbc.274.18.12925. [DOI] [PubMed] [Google Scholar]
  38. Scott P. H., Brunn G. J., Kohn A. D., Roth R. A., Lawrence J. C., Jr Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7772–7777. doi: 10.1073/pnas.95.13.7772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Servant M. J., Giasson E., Meloche S. Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem. 1996 Jul 5;271(27):16047–16052. doi: 10.1074/jbc.271.27.16047. [DOI] [PubMed] [Google Scholar]
  40. Shigemitsu K., Tsujishita Y., Hara K., Nanahoshi M., Avruch J., Yonezawa K. Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem. 1999 Jan 8;274(2):1058–1065. doi: 10.1074/jbc.274.2.1058. [DOI] [PubMed] [Google Scholar]
  41. Wang X., Campbell L. E., Miller C. M., Proud C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J. 1998 Aug 15;334(Pt 1):261–267. doi: 10.1042/bj3340261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang X., Flynn A., Waskiewicz A. J., Webb B. L., Vries R. G., Baines I. A., Cooper J. A., Proud C. G. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem. 1998 Apr 17;273(16):9373–9377. doi: 10.1074/jbc.273.16.9373. [DOI] [PubMed] [Google Scholar]
  43. Waskiewicz A. J., Flynn A., Proud C. G., Cooper J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997 Apr 15;16(8):1909–1920. doi: 10.1093/emboj/16.8.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Welsh G. I., Miller C. M., Loughlin A. J., Price N. T., Proud C. G. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett. 1998 Jan 9;421(2):125–130. doi: 10.1016/s0014-5793(97)01548-2. [DOI] [PubMed] [Google Scholar]
  45. Welsh G. I., Proud C. G. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J. 1993 Sep 15;294(Pt 3):625–629. doi: 10.1042/bj2940625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Xu G., Kwon G., Marshall C. A., Lin T. A., Lawrence J. C., Jr, McDaniel M. L. Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem. 1998 Oct 23;273(43):28178–28184. doi: 10.1074/jbc.273.43.28178. [DOI] [PubMed] [Google Scholar]
  47. Xu G., Marshall C. A., Lin T. A., Kwon G., Munivenkatappa R. B., Hill J. R., Lawrence J. C., Jr, McDaniel M. L. Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem. 1998 Feb 20;273(8):4485–4491. doi: 10.1074/jbc.273.8.4485. [DOI] [PubMed] [Google Scholar]
  48. van Weeren P. C., de Bruyn K. M., de Vries-Smits A. M., van Lint J., Burgering B. M. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998 May 22;273(21):13150–13156. doi: 10.1074/jbc.273.21.13150. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES