Abstract
The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), is inactivated by reaction with the pseudosubstrate, O(6)-benzylguanine (BG). This inactivation sensitizes tumour cells to chemotherapeutic alkylating agents, and BG is aimed at enhancing cancer treatment in clinical trials. Point mutations in a 24 amino acid sequence likely to form the BG-binding pocket were identified using a screening method designed to identify BG-resistant mutants. It was found that alterations in 21 of these residues were able to render AGT resistant to BG. These included mutations at the highly conserved residues Lys(165), Leu(168) and Leu(169). The two positions at which changes led to the largest increase in resistance to BG were Gly(156) and Lys(165). Eleven mutants at Gly(156) were identified, with increases in resistance ranging from 190-fold (G156V) to 4400-fold (G156P). Two mutants at Lys(165) found in the screen (K165S and K165A) showed 620-fold and 100-fold increases in resistance to BG. Two mutants at the Ser(159) position (S159I and S159V) were >80-fold more resistant than wild-type AGT. Eleven active mutants at Leu(169) were also resistant to BG, but with lower increases (5-86-fold). Fourteen BG-resistant mutants were found for position Cys(150), with 3-26-fold increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation. Six BG-resistant mutants at Asn(157) were found with increases of 4-13-fold. These results show that many changes can render human AGT resistant to BG without preventing the ability to protect tumour cells from therapeutic alkylating agents.
Full Text
The Full Text of this article is available as a PDF (152.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Christians F. C., Dawson B. J., Coates M. M., Loeb L. A. Creation of human alkyltransferases resistant to O6-benzylguanine. Cancer Res. 1997 May 15;57(10):2007–2012. [PubMed] [Google Scholar]
- Crone T. M., Goodtzova K., Edara S., Pegg A. E. Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res. 1994 Dec 1;54(23):6221–6227. [PubMed] [Google Scholar]
- Crone T. M., Goodtzova K., Pegg A. E. Amino acid residues affecting the activity and stability of human O6-alkylguanine-DNA alkyltransferase. Mutat Res. 1996 May 15;363(1):15–25. doi: 10.1016/0921-8777(95)00058-5. [DOI] [PubMed] [Google Scholar]
- Crone T. M., Kanugula S., Pegg A. E. Mutations in the Ada O6-alkylguanine-DNA alkyltransferase conferring sensitivity to inactivation by O6-benzylguanine and 2,4-diamino-6-benzyloxy-5-nitrosopyrimidine. Carcinogenesis. 1995 Aug;16(8):1687–1692. doi: 10.1093/carcin/16.8.1687. [DOI] [PubMed] [Google Scholar]
- Crone T. M., Pegg A. E. A single amino acid change in human O6-alkylguanine-DNA alkyltransferase decreasing sensitivity to inactivation by O6-benzylguanine. Cancer Res. 1993 Oct 15;53(20):4750–4753. [PubMed] [Google Scholar]
- Davis B. M., Reese J. S., Koç O. N., Lee K., Schupp J. E., Gerson S. L. Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 1997 Nov 15;57(22):5093–5099. [PubMed] [Google Scholar]
- Dolan M. E., Moschel R. C., Pegg A. E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5368–5372. doi: 10.1073/pnas.87.14.5368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolan M. E., Pegg A. E., Dumenco L. L., Moschel R. C., Gerson S. L. Comparison of the inactivation of mammalian and bacterial O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine and O6-methylguanine. Carcinogenesis. 1991 Dec;12(12):2305–2309. doi: 10.1093/carcin/12.12.2305. [DOI] [PubMed] [Google Scholar]
- Dolan M. E., Pegg A. E. O6-benzylguanine and its role in chemotherapy. Clin Cancer Res. 1997 Jun;3(6):837–847. [PubMed] [Google Scholar]
- Dolan M. E., Roy S. K., Fasanmade A. A., Paras P. R., Schilsky R. L., Ratain M. J. O6-benzylguanine in humans: metabolic, pharmacokinetic, and pharmacodynamic findings. J Clin Oncol. 1998 May;16(5):1803–1810. doi: 10.1200/JCO.1998.16.5.1803. [DOI] [PubMed] [Google Scholar]
- Edara S., Goodtzova K., Pegg A. E. The role of tyrosine-158 in O6-alkylguanine-DNA alkyltransferase activity. Carcinogenesis. 1995 Jul;16(7):1637–1642. doi: 10.1093/carcin/16.7.1637. [DOI] [PubMed] [Google Scholar]
- Edara S., Kanugula S., Goodtzova K., Pegg A. E. Resistance of the human O6-alkylguanine-DNA alkyltransferase containing arginine at codon 160 to inactivation by O6-benzylguanine. Cancer Res. 1996 Dec 15;56(24):5571–5575. [PubMed] [Google Scholar]
- Elder R. H., Margison G. P., Rafferty J. A. Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine. Biochem J. 1994 Feb 15;298(Pt 1):231–235. doi: 10.1042/bj2980231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Encell L. P., Coates M. M., Loeb L. A. Engineering human DNA alkyltransferases for gene therapy using random sequence mutagenesis. Cancer Res. 1998 Mar 1;58(5):1013–1020. [PubMed] [Google Scholar]
- Friedman H. S., Kokkinakis D. M., Pluda J., Friedman A. H., Cokgor I., Haglund M. M., Ashley D. M., Rich J., Dolan M. E., Pegg A. E. Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol. 1998 Nov;16(11):3570–3575. doi: 10.1200/JCO.1998.16.11.3570. [DOI] [PubMed] [Google Scholar]
- Goodtzova K., Kanugula S., Edara S., Pauly G. T., Moschel R. C., Pegg A. E. Repair of O6-benzylguanine by the Escherichia coli Ada and Ogt and the human O6-alkylguanine-DNA alkyltransferases. J Biol Chem. 1997 Mar 28;272(13):8332–8339. doi: 10.1074/jbc.272.13.8332. [DOI] [PubMed] [Google Scholar]
- Goodtzova K., Kanugula S., Edara S., Pegg A. E. Investigation of the role of tyrosine-114 in the activity of human O6-alkylguanine-DNA alkyltranferase. Biochemistry. 1998 Sep 8;37(36):12489–12495. doi: 10.1021/bi9811718. [DOI] [PubMed] [Google Scholar]
- Hashimoto H., Inoue T., Nishioka M., Fujiwara S., Takagi M., Imanaka T., Kai Y. Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase. J Mol Biol. 1999 Sep 24;292(3):707–716. doi: 10.1006/jmbi.1999.3100. [DOI] [PubMed] [Google Scholar]
- Kanugula S., Goodtzova K., Edara S., Pegg A. E. Alteration of arginine-128 to alanine abolishes the ability of human O6-alkylguanine-DNA alkyltransferase to repair methylated DNA but has no effect on its reaction with O6-benzylguanine. Biochemistry. 1995 May 30;34(21):7113–7119. doi: 10.1021/bi00021a024. [DOI] [PubMed] [Google Scholar]
- Kanugula S., Goodtzova K., Pegg A. E. Probing of conformational changes in human O6-alkylguanine-DNA alkyl transferase protein in its alkylated and DNA-bound states by limited proteolysis. Biochem J. 1998 Feb 1;329(Pt 3):545–550. doi: 10.1042/bj3290545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koç O. N., Reese J. S., Davis B. M., Liu L., Majczenko K. J., Gerson S. L. DeltaMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum Gene Ther. 1999 Apr 10;10(6):1021–1030. doi: 10.1089/10430349950018418. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
- Liu L., Lee K., Wasan E., Gerson S. L. Differential sensitivity of human and mouse alkyltransferase to O6-benzylguanine using a transgenic model. Cancer Res. 1996 Apr 15;56(8):1880–1885. [PubMed] [Google Scholar]
- Loktionova N. A., Pegg A. E. Point mutations in human O6-alkylguanine-DNA alkyltransferase prevent the sensitization by O6-benzylguanine to killing by N,N'-bis (2-chloroethyl)-N-nitrosourea. Cancer Res. 1996 Apr 1;56(7):1578–1583. [PubMed] [Google Scholar]
- Loktionova N. A., Xu-Welliver M., Crone T. M., Kanugula S., Pegg A. E. Protection of CHO cells by mutant forms of O6-alkylguanine-DNA alkyltransferase from killing by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) plus O6-benzylguanine or O6-benzyl-8-oxoguanine. Biochem Pharmacol. 1999 Jul 15;58(2):237–244. doi: 10.1016/s0006-2952(99)00095-7. [DOI] [PubMed] [Google Scholar]
- Mitra S., Kaina B. Regulation of repair of alkylation damage in mammalian genomes. Prog Nucleic Acid Res Mol Biol. 1993;44:109–142. doi: 10.1016/s0079-6603(08)60218-4. [DOI] [PubMed] [Google Scholar]
- Moore M. H., Gulbis J. M., Dodson E. J., Demple B., Moody P. C. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 1994 Apr 1;13(7):1495–1501. doi: 10.1002/j.1460-2075.1994.tb06410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E., Boosalis M., Samson L., Moschel R. C., Byers T. L., Swenn K., Dolan M. E. Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry. 1993 Nov 16;32(45):11998–12006. doi: 10.1021/bi00096a009. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Byers T. L. Repair of DNA containing O6-alkylguanine. FASEB J. 1992 Mar;6(6):2302–2310. doi: 10.1096/fasebj.6.6.1544541. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Dolan M. E., Moschel R. C. Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol. 1995;51:167–223. doi: 10.1016/s0079-6603(08)60879-x. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Wiest L., Mummert C., Stine L., Moschel R. C., Dolan M. E. Use of antibodies to human O6-alkylguanine-DNA alkyltransferase to study the content of this protein in cells treated with O6-benzylguanine or N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis. 1991 Sep;12(9):1679–1683. doi: 10.1093/carcin/12.9.1679. [DOI] [PubMed] [Google Scholar]
- Pieper R. O., Morgan S. E., Kelley M. R. The role of two conserved amino acids, glutamine 90 and asparagine 137, in O6-methylguanine-DNA methyltransferase stability, activity and substrate specificity. Carcinogenesis. 1994 Sep;15(9):1895–1902. doi: 10.1093/carcin/15.9.1895. [DOI] [PubMed] [Google Scholar]
- Rafferty J. A., Tumelty J., Skorvaga M., Elder R. H., Margison G. P., Douglas K. T. Site-directed mutagenesis of glutamic acid 172 to glutamine completely inactivated human O6-alkylguanine-DNA-alkyltransferase. Biochem Biophys Res Commun. 1994 Feb 28;199(1):285–291. doi: 10.1006/bbrc.1994.1226. [DOI] [PubMed] [Google Scholar]
- Rebeck G. W., Samson L. Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase. J Bacteriol. 1991 Mar;173(6):2068–2076. doi: 10.1128/jb.173.6.2068-2076.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reese J. S., Koç O. N., Lee K. M., Liu L., Allay J. A., Phillips W. P., Jr, Gerson S. L. Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis(2-chloroethyl)-1-nitrosourea. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14088–14093. doi: 10.1073/pnas.93.24.14088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reidhaar-Olson J. F., Bowie J. U., Breyer R. M., Hu J. C., Knight K. L., Lim W. A., Mossing M. C., Parsell D. A., Shoemaker K. R., Sauer R. T. Random mutagenesis of protein sequences using oligonucleotide cassettes. Methods Enzymol. 1991;208:564–586. doi: 10.1016/0076-6879(91)08029-h. [DOI] [PubMed] [Google Scholar]
- Samson L. The suicidal DNA repair methyltransferases of microbes. Mol Microbiol. 1992 Apr;6(7):825–831. doi: 10.1111/j.1365-2958.1992.tb01533.x. [DOI] [PubMed] [Google Scholar]
- Spratt T. E., Wu J. D., Levy D. E., Kanugula S., Pegg A. E. Reaction and binding of oligodeoxynucleotides containing analogues of O6-methylguanine with wild-type and mutant human O6-alkylguanine-DNA alkyltransferase. Biochemistry. 1999 May 25;38(21):6801–6806. doi: 10.1021/bi982908w. [DOI] [PubMed] [Google Scholar]
- Srivenugopal K. S., Yuan X. H., Friedman H. S., Ali-Osman F. Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemistry. 1996 Jan 30;35(4):1328–1334. doi: 10.1021/bi9518205. [DOI] [PubMed] [Google Scholar]
- Stefan T. L., Ingalls S. T., Minkler P. E., Willson J. K., Gerson S. L., Spiro T. P., Hoppel C. L. Simultaneous determination of O6-benzylguanine and 8-oxo-O6-benzylguanine in human plasma by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1997 Dec 19;704(1-2):289–298. doi: 10.1016/s0378-4347(97)00446-5. [DOI] [PubMed] [Google Scholar]
- Vora R. A., Pegg A. E., Ealick S. E. A new model for how O6-methylguanine-DNA methyltransferase binds DNA. Proteins. 1998 Jul 1;32(1):3–6. [PubMed] [Google Scholar]
- Wibley J. E., Pegg A. E., Moody P. C. Crystal structure of the human O(6)-alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 2000 Jan 15;28(2):393–401. doi: 10.1093/nar/28.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu-Welliver M., Kanugula S., Loktionova N. A., Crone T. M., Pegg A. E. Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine. Biochem J. 2000 Apr 15;347(Pt 2):527–534. doi: 10.1042/0264-6021:3470527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu-Welliver M., Kanugula S., Pegg A. E. Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res. 1998 May 1;58(9):1936–1945. [PubMed] [Google Scholar]
- Xu-Welliver M., Leitão J., Kanugula S., Pegg A. E. Alteration of the conserved residue tyrosine-158 to histidine renders human O6-alkylguanine-DNA alkyltransferase insensitive to the inhibitor O6-benzylguanine. Cancer Res. 1999 Apr 1;59(7):1514–1519. [PubMed] [Google Scholar]
