Abstract
The effects of mutation of key conserved active-site residues (Tyr-73, Phe-418, Trp-430, Arg-516, Asn-518, His-520 and His-563) of glucose oxidase from Penicillium amagasakiense on substrate binding were investigated. Kinetic studies on the oxidation of beta-D-glucose combined with molecular modelling showed the side chain of Arg-516, which forms two hydrogen bonds with the 3-OH group of beta-D-glucose, to be absolutely essential for the efficient binding of beta-D-glucose. The R516K variant, whose side chain forms only one hydrogen bond with the 3-OH group of beta-D-glucose, exhibits an 80-fold higher apparent K(m) (513 mM) but a V(max) only 70% lower (280 units/mg) than the wild type. The complete elimination of a hydrogen-bond interaction between residue 516 and the 3-OH group of beta-D-glucose through the substitution R516Q effected a 120-fold increase in the apparent K(m) for glucose (to 733 mM) and a decrease in the V(max) to 1/30 (33 units/mg). None of the other substitutions, with the exception of variant F418A, affected the apparent K(m) more than 6-fold. In contrast, the removal of aromatic or bulky residues at positions 73, 418 or 430 resulted in decreases in the maximum rates of glucose oxidation to less than 1/90. Variants of the potentially catalytically active His-520 and His-563 were completely, or almost completely, inactive. Thus, of the residues forming the active site of glucose oxidase, Arg-516 is the most critical amino acid for the efficient binding of beta-D-glucose by the enzyme, whereas aromatic residues at positions 73, 418 and 430 are important for the correct orientation and maximal velocity of glucose oxidation.
Full Text
The Full Text of this article is available as a PDF (152.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bright H. J., Appleby M. The pH dependence of the individual steps in the glucose oxidase reaction. J Biol Chem. 1969 Jul 10;244(13):3625–3634. [PubMed] [Google Scholar]
- Butcher L. A., Tomkins J. K. A comparison of silver staining methods for detecting proteins in ultrathin polyacrylamide gels on support film after isoelectric focusing. Anal Biochem. 1985 Aug 1;148(2):384–388. doi: 10.1016/0003-2697(85)90243-x. [DOI] [PubMed] [Google Scholar]
- Cavener D. R. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol. 1992 Feb 5;223(3):811–814. doi: 10.1016/0022-2836(92)90992-s. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., SWOBODA B. E., MASSEY V. KINETICS AND MECHANISM OF ACTION OF GLUCOSE OXIDASE. J Biol Chem. 1964 Nov;239:3927–3934. [PubMed] [Google Scholar]
- Hecht H. J., Kalisz H. M., Hendle J., Schmid R. D., Schomburg D. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J Mol Biol. 1993 Jan 5;229(1):153–172. doi: 10.1006/jmbi.1993.1015. [DOI] [PubMed] [Google Scholar]
- Hennessey J. P., Jr, Johnson W. C., Jr Information content in the circular dichroism of proteins. Biochemistry. 1981 Mar 3;20(5):1085–1094. doi: 10.1021/bi00508a007. [DOI] [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Kalisz H. M., Hendle J., Schmid R. D. Structural and biochemical properties of glycosylated and deglycosylated glucose oxidase from Penicillium amagasakiense. Appl Microbiol Biotechnol. 1997 May;47(5):502–507. doi: 10.1007/s002530050963. [DOI] [PubMed] [Google Scholar]
- Kiess M., Hecht H. J., Kalisz H. M. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases. Eur J Biochem. 1998 Feb 15;252(1):90–99. doi: 10.1046/j.1432-1327.1998.2520090.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Massey V., Hemmerich P. Active-site probes of flavoproteins. Biochem Soc Trans. 1980 Jun;8(3):246–257. doi: 10.1042/bst0080246. [DOI] [PubMed] [Google Scholar]
- NAKAMURA T., OGURA Y. Kinetic studies on the action of glucose oxidase. J Biochem. 1962 Sep;52:214–220. doi: 10.1093/oxfordjournals.jbchem.a127599. [DOI] [PubMed] [Google Scholar]
- Nakamura S., Ogura Y. Action mechanism of glucose oxidase of Aspergillus niger. J Biochem. 1968 Mar;63(3):308–316. [PubMed] [Google Scholar]
- PAZUR J. H., KLEPPE K. THE OXIDATION OF GLUCOSE AND RELATED COMPOUNDS BY GLUCOSE OXIDASE FROM ASPERGILLUS NIGER. Biochemistry. 1964 Apr;3:578–583. doi: 10.1021/bi00892a018. [DOI] [PubMed] [Google Scholar]
- Sierks M. R., Bock K., Refn S., Svensson B. Active site similarities of glucose dehydrogenase, glucose oxidase, and glucoamylase probed by deoxygenated substrates. Biochemistry. 1992 Sep 22;31(37):8972–8977. doi: 10.1021/bi00152a038. [DOI] [PubMed] [Google Scholar]
- Su Q., Klinman J. P. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation. Biochemistry. 1999 Jun 29;38(26):8572–8581. doi: 10.1021/bi990044o. [DOI] [PubMed] [Google Scholar]
- Swoboda B. E., Massey V. On the reaction of the glucose oxidase from Aspergillus niger with bisulfite. J Biol Chem. 1966 Jul 25;241(14):3409–3416. [PubMed] [Google Scholar]
- Swoboda B. E. The relationship between molecular conformation and the binding of flavin-adenine dinucleotide in glucose oxidase. Biochim Biophys Acta. 1969 Mar;175(2):365–379. doi: 10.1016/0005-2795(69)90014-2. [DOI] [PubMed] [Google Scholar]
- Tsuge H., Mitsuda H. Reconstitution of flavin-adenine dinucleotide in the apoenzyme of glucose oxidase. J Vitaminol (Kyoto) 1971 Mar 10;17(1):24–31. doi: 10.5925/jnsv1954.17.24. [DOI] [PubMed] [Google Scholar]
- Wallace A. C., Laskowski R. A., Thornton J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
- Weibel M. K., Bright H. J. The glucose oxidase mechanism. Interpretation of the pH dependence. J Biol Chem. 1971 May 10;246(9):2734–2744. [PubMed] [Google Scholar]
- Witt S., Singh M., Kalisz H. M. Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. Appl Environ Microbiol. 1998 Apr;64(4):1405–1411. doi: 10.1128/aem.64.4.1405-1411.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wohlfahrt G., Witt S., Hendle J., Schomburg D., Kalisz H. M., Hecht H. J. 1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):969–977. doi: 10.1107/s0907444999003431. [DOI] [PubMed] [Google Scholar]