Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 15;347(Pt 2):571–578. doi: 10.1042/0264-6021:3470571

Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells.

S J MacKenzie 1, M D Houslay 1
PMCID: PMC1220991  PMID: 10749688

Abstract

U937 monocytic cells are shown here to express a range of PDE4, cAMP-specific phosphodiesterase (PDE) isoenzymes: the long isoenzymes, PDE4A4, PDE4D5 and PDE4D3, plus the short isoenzyme, PDE4B2. These isoenzymes provide around 76% of the total cAMP PDE activity of U937 cells. The specific activities of the total PDE4A, PDE4B and PDE4D activities were 0.63+/-0.09, 8.8+/-0.2 and 34.4+/-2.9 pmol/min per mg of protein respectively. The PDE4 selective inhibitor, rolipram, inhibited immunopurified PDE4B and PDE4D activities similarly, with IC(50) values of approx. 130 nM and 240 nM respectively. In contrast, rolipram inhibited immunopurified PDE4A activity with a dramatically lower IC(50) value of around 3 nM. Rolipram increased phosphorylation of cAMP-response-element-binding protein (CREB) in U937 cells in a dose-dependent fashion, which implied the presence of both high affinity (IC(50) value approx. 1 nM) and low affinity (IC(50) value approx. 120 nM) components. Rolipram dose-dependently inhibited the interferon-gamma (IFN-gamma)-stimulated phosphorylation of p38 mitogen-activated protein (MAP) kinase in a simple monotonic fashion with an IC(50) value of approx. 290 nM. On this basis, it is suggested that rolipram inhibition of PDE4A4 is involved in regulating CREB phosphorylation but not IFN-gamma-stimulated p38 MAP kinase phosphorylation. PDE4A4 was also selectively activated by challenge of U937 cells with either bacterial lipopolysaccharide (LPS) or IFN-gamma through a process which was attenuated by both wortmannin and rapamycin. It is proposed that the PDE4A4 isoform is involved in compartmentalized cAMP signalling responses in U937 monocytes.

Full Text

The Full Text of this article is available as a PDF (218.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R. T., Wiederrecht G. J. Immunopharmacology of rapamycin. Annu Rev Immunol. 1996;14:483–510. doi: 10.1146/annurev.immunol.14.1.483. [DOI] [PubMed] [Google Scholar]
  2. Bolger G. B., Erdogan S., Jones R. E., Loughney K., Scotland G., Hoffmann R., Wilkinson I., Farrell C., Houslay M. D. Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J. 1997 Dec 1;328(Pt 2):539–548. doi: 10.1042/bj3280539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolger G. B. Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal. 1994 Nov;6(8):851–859. doi: 10.1016/0898-6568(94)90018-3. [DOI] [PubMed] [Google Scholar]
  4. Brown E. J., Schreiber S. L. A signaling pathway to translational control. Cell. 1996 Aug 23;86(4):517–520. doi: 10.1016/s0092-8674(00)80125-7. [DOI] [PubMed] [Google Scholar]
  5. Coghlan V. M., Bergeson S. E., Langeberg L., Nilaver G., Scott J. D. A-kinase anchoring proteins: a key to selective activation of cAMP-responsive events? Mol Cell Biochem. 1993 Nov;127-128:309–319. doi: 10.1007/978-1-4615-2600-1_28. [DOI] [PubMed] [Google Scholar]
  6. Colledge M., Scott J. D. AKAPs: from structure to function. Trends Cell Biol. 1999 Jun;9(6):216–221. doi: 10.1016/s0962-8924(99)01558-5. [DOI] [PubMed] [Google Scholar]
  7. Conti M., Jin S. L. The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 1999;63:1–38. doi: 10.1016/s0079-6603(08)60718-7. [DOI] [PubMed] [Google Scholar]
  8. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  9. Erdogan S., Houslay M. D. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Biochem J. 1997 Jan 1;321(Pt 1):165–175. doi: 10.1042/bj3210165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Han J., Lee J. D., Tobias P. S., Ulevitch R. J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem. 1993 Nov 25;268(33):25009–25014. [PubMed] [Google Scholar]
  11. Herrera-Velit P., Knutson K. L., Reiner N. E. Phosphatidylinositol 3-kinase-dependent activation of protein kinase C-zeta in bacterial lipopolysaccharide-treated human monocytes. J Biol Chem. 1997 Jun 27;272(26):16445–16452. doi: 10.1074/jbc.272.26.16445. [DOI] [PubMed] [Google Scholar]
  12. Herrera-Velit P., Reiner N. E. Bacterial lipopolysaccharide induces the association and coordinate activation of p53/56lyn and phosphatidylinositol 3-kinase in human monocytes. J Immunol. 1996 Feb 1;156(3):1157–1165. [PubMed] [Google Scholar]
  13. Hoffmann R., Baillie G. S., MacKenzie S. J., Yarwood S. J., Houslay M. D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 1999 Feb 15;18(4):893–903. doi: 10.1093/emboj/18.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houslay M. D., Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. doi: 10.1016/s0968-0004(97)01050-5. [DOI] [PubMed] [Google Scholar]
  15. Houslay M. D., Sullivan M., Bolger G. B. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv Pharmacol. 1998;44:225–342. doi: 10.1016/s1054-3589(08)60128-3. [DOI] [PubMed] [Google Scholar]
  16. Huston E., Lumb S., Russell A., Catterall C., Ross A. H., Steele M. R., Bolger G. B., Perry M. J., Owens R. J., Houslay M. D. Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem J. 1997 Dec 1;328(Pt 2):549–558. doi: 10.1042/bj3280549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huston E., Pooley L., Julien P., Scotland G., McPhee I., Sullivan M., Bolger G., Houslay M. D. The human cyclic AMP-specific phosphodiesterase PDE-46 (HSPDE4A4B) expressed in transfected COS7 cells occurs as both particulate and cytosolic species that exhibit distinct kinetics of inhibition by the antidepressant rolipram. J Biol Chem. 1996 Dec 6;271(49):31334–31344. doi: 10.1074/jbc.271.49.31334. [DOI] [PubMed] [Google Scholar]
  18. Kovala T., Sanwal B. D., Ball E. H. Recombinant expression of a type IV, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants. Biochemistry. 1997 Mar 11;36(10):2968–2976. doi: 10.1021/bi9613483. [DOI] [PubMed] [Google Scholar]
  19. Ma D., Wu P., Egan R. W., Billah M. M., Wang P. Phosphodiesterase 4B gene transcription is activated by lipopolysaccharide and inhibited by interleukin-10 in human monocytes. Mol Pharmacol. 1999 Jan;55(1):50–57. doi: 10.1124/mol.55.1.50. [DOI] [PubMed] [Google Scholar]
  20. MacKenzie S. J., Yarwood S. J., Peden A. H., Bolger G. B., Vernon R. G., Houslay M. D. Stimulation of p70S6 kinase via a growth hormone-controlled phosphatidylinositol 3-kinase pathway leads to the activation of a PDE4A cyclic AMP-specific phosphodiesterase in 3T3-F442A preadipocytes. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3549–3554. doi: 10.1073/pnas.95.7.3549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manganiello V. C., Taira M., Degerman E., Belfrage P. Type III cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE3 gene family). Cell Signal. 1995 Jul;7(5):445–455. doi: 10.1016/0898-6568(95)00017-j. [DOI] [PubMed] [Google Scholar]
  22. Manning C. D., McLaughlin M. M., Livi G. P., Cieslinski L. B., Torphy T. J., Barnette M. S. Prolonged beta adrenoceptor stimulation up-regulates cAMP phosphodiesterase activity in human monocytes by increasing mRNA and protein for phosphodiesterases 4A and 4B. J Pharmacol Exp Ther. 1996 Feb;276(2):810–818. [PubMed] [Google Scholar]
  23. Manthey C. L., Wang S. W., Kinney S. D., Yao Z. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J Leukoc Biol. 1998 Sep;64(3):409–417. doi: 10.1002/jlb.64.3.409. [DOI] [PubMed] [Google Scholar]
  24. Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McPhee I., Yarwood S. J., Scotland G., Huston E., Beard M. B., Ross A. H., Houslay E. S., Houslay M. D. Association with the SRC family tyrosyl kinase LYN triggers a conformational change in the catalytic region of human cAMP-specific phosphodiesterase HSPDE4A4B. Consequences for rolipram inhibition. J Biol Chem. 1999 Apr 23;274(17):11796–11810. doi: 10.1074/jbc.274.17.11796. [DOI] [PubMed] [Google Scholar]
  26. Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem. 1997;66:807–822. doi: 10.1146/annurev.biochem.66.1.807. [DOI] [PubMed] [Google Scholar]
  27. Nakanishi S., Yano H., Matsuda Y. Novel functions of phosphatidylinositol 3-kinase in terminally differentiated cells. Cell Signal. 1995 Aug;7(6):545–557. doi: 10.1016/0898-6568(95)00033-l. [DOI] [PubMed] [Google Scholar]
  28. Nick J. A., Avdi N. J., Young S. K., Lehman L. A., McDonald P. P., Frasch S. C., Billstrom M. A., Henson P. M., Johnson G. L., Worthen G. S. Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest. 1999 Mar;103(6):851–858. doi: 10.1172/JCI5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Owens R. J., Lumb S., Rees-Milton K., Russell A., Baldock D., Lang V., Crabbe T., Ballesteros M., Perry M. J. Molecular cloning and expression of a human phosphodiesterase 4C. Cell Signal. 1997 Dec;9(8):575–585. doi: 10.1016/s0898-6568(97)00072-7. [DOI] [PubMed] [Google Scholar]
  30. Rubin C. S. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta. 1994 Dec 30;1224(3):467–479. [PubMed] [Google Scholar]
  31. Schafer P. H., Wang L., Wadsworth S. A., Davis J. E., Siekierka J. J. T cell activation signals up-regulate p38 mitogen-activated protein kinase activity and induce TNF-alpha production in a manner distinct from LPS activation of monocytes. J Immunol. 1999 Jan 15;162(2):659–668. [PubMed] [Google Scholar]
  32. Schudt C., Tenor H., Hatzelmann A. PDE isoenzymes as targets for anti-asthma drugs. Eur Respir J. 1995 Jul;8(7):1179–1183. doi: 10.1183/09031936.95.08071179. [DOI] [PubMed] [Google Scholar]
  33. Scott P. H., Lawrence J. C., Jr Attenuation of mammalian target of rapamycin activity by increased cAMP in 3T3-L1 adipocytes. J Biol Chem. 1998 Dec 18;273(51):34496–34501. doi: 10.1074/jbc.273.51.34496. [DOI] [PubMed] [Google Scholar]
  34. Seldon P. M., Barnes P. J., Meja K., Giembycz M. A. Suppression of lipopolysaccharide-induced tumor necrosis factor-alpha generation from human peripheral blood monocytes by inhibitors of phosphodiesterase 4: interaction with stimulants of adenylyl cyclase. Mol Pharmacol. 1995 Oct;48(4):747–757. [PubMed] [Google Scholar]
  35. Souness J. E., Griffin M., Maslen C., Ebsworth K., Scott L. C., Pollock K., Palfreyman M. N., Karlsson J. A. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer. Br J Pharmacol. 1996 Jun;118(3):649–658. doi: 10.1111/j.1476-5381.1996.tb15450.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Souness J. E., Rao S. Proposal for pharmacologically distinct conformers of PDE4 cyclic AMP phosphodiesterases. Cell Signal. 1997 May-Jun;9(3-4):227–236. doi: 10.1016/s0898-6568(96)00173-8. [DOI] [PubMed] [Google Scholar]
  37. Spence S., Rena G., Sweeney G., Houslay M. D. Induction of Ca2+/calmodulin-stimulated cyclic AMP phosphodiesterase (PDE1) activity in Chinese hamster ovary cells (CHO) by phorbol 12-myristate 13-acetate and by the selective overexpression of protein kinase C isoforms. Biochem J. 1995 Sep 15;310(Pt 3):975–982. doi: 10.1042/bj3100975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sullivan M., Olsen A. S., Houslay M. D. Genomic organisation of the human cyclic AMP-specific phosphodiesterase PDE4C gene and its chromosomal localisation to 19p13.1, between RAB3A and JUND. Cell Signal. 1999 Oct;11(10):735–742. doi: 10.1016/s0898-6568(99)00037-6. [DOI] [PubMed] [Google Scholar]
  39. Sullivan M., Rena G., Begg F., Gordon L., Olsen A. S., Houslay M. D. Identification and characterization of the human homologue of the short PDE4A cAMP-specific phosphodiesterase RD1 (PDE4A1) by analysis of the human HSPDE4A gene locus located at chromosome 19p13.2. Biochem J. 1998 Aug 1;333(Pt 3):693–703. doi: 10.1042/bj3330693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Teixeira M. M., Gristwood R. W., Cooper N., Hellewell P. G. Phosphodiesterase (PDE)4 inhibitors: anti-inflammatory drugs of the future? Trends Pharmacol Sci. 1997 May;18(5):164–171. doi: 10.1016/s0165-6147(97)01049-3. [DOI] [PubMed] [Google Scholar]
  41. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  42. Torphy T. J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med. 1998 Feb;157(2):351–370. doi: 10.1164/ajrccm.157.2.9708012. [DOI] [PubMed] [Google Scholar]
  43. Torphy T. J., Zhou H. L., Cieslinski L. B. Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity. J Pharmacol Exp Ther. 1992 Dec;263(3):1195–1205. [PubMed] [Google Scholar]
  44. Torphy T. J., Zhou H. L., Foley J. J., Sarau H. M., Manning C. D., Barnette M. S. Salbutamol up-regulates PDE4 activity and induces a heterologous desensitization of U937 cells to prostaglandin E2. Implications for the therapeutic use of beta-adrenoceptor agonists. J Biol Chem. 1995 Oct 6;270(40):23598–23604. doi: 10.1074/jbc.270.40.23598. [DOI] [PubMed] [Google Scholar]
  45. Uddin S., Majchrzak B., Woodson J., Arunkumar P., Alsayed Y., Pine R., Young P. R., Fish E. N., Platanias L. C. Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem. 1999 Oct 15;274(42):30127–30131. doi: 10.1074/jbc.274.42.30127. [DOI] [PubMed] [Google Scholar]
  46. Verghese M. W., McConnell R. T., Lenhard J. M., Hamacher L., Jin S. L. Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells. Mol Pharmacol. 1995 Jun;47(6):1164–1171. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES