Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 15;347(Pt 2):579–583. doi: 10.1042/0264-6021:3470579

The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk.

T Kuraishi 1, Y Sun 1, F Aoki 1, K Imakawa 1, S Sakai 1
PMCID: PMC1220992  PMID: 10749689

Abstract

The length of casein mRNA from the lactating mouse mammary gland, as assessed on Northern blots, is shorter after weaning, but is elongated following the removal of milk. In order to investigate this phenomenon, the molecular structures of beta- and gamma-casein mRNAs were analysed. The coding and non-coding regions of the two forms were the same length, but the long form of casein mRNA had a longer poly(A) tail than the short form (P<0.05). In order to examine the stability of casein mRNA under identical conditions, casein mRNAs with the long and short poly(A) tails were incubated in the rabbit reticulocyte lysate (RRL) cell-free translation system. Casein mRNA with the long poly(A) tail had a longer half-life than that with the short tail (P<0.05). The beta- and gamma-casein mRNAs were first degraded into 0.92 and 0.81 kb fragments respectively. With undegraded mRNA, the poly(A) tail shortening by exoribonuclease was not observed until the end of the incubation. Northern blot analysis showed that casein mRNA with the long poly(A) tail was protected efficiently from endoribonucleases. We conclude that the length of the poly(A) tail of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of the gland's milk, and we show that the longer poly(A) tail potentially protects the mRNA from degradation by endoribonucleases.

Full Text

The Full Text of this article is available as a PDF (190.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein P., Peltz S. W., Ross J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol Cell Biol. 1989 Feb;9(2):659–670. doi: 10.1128/mcb.9.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brewer G., Ross J. Poly(A) shortening and degradation of the 3' A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol Cell Biol. 1988 Apr;8(4):1697–1708. doi: 10.1128/mcb.8.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaturvedi C. M., Zheng Z., Shimada K., Cornett L. E., Koike T. I. Changes in poly(A) tail length of arginine vasotocin messenger ribonucleic acid in the hypothalamus of water-deprived chickens. Gen Comp Endocrinol. 1996 Sep;103(3):316–322. doi: 10.1006/gcen.1996.0127. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Qasba P., Topper Y. J. Transcriptional and post-transcriptional roles of glucocorticoid in the expression of the rat 25,000 molecular weight casein gene. Biochem Biophys Res Commun. 1986 Jan 29;134(2):812–818. doi: 10.1016/s0006-291x(86)80493-4. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Chooi K. F., Carter D. A., Murphy D. Decrease in hypothalamic vasopressin mRNA poly(A) tail length following physiological stimulation. Cell Mol Neurobiol. 1992 Dec;12(6):557–567. doi: 10.1007/BF00711235. [DOI] [PubMed] [Google Scholar]
  7. Craig A. W., Haghighat A., Yu A. T., Sonenberg N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature. 1998 Apr 2;392(6675):520–523. doi: 10.1038/33198. [DOI] [PubMed] [Google Scholar]
  8. Eisenstein R. S., Rosen J. M. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level. Mol Cell Biol. 1988 Aug;8(8):3183–3190. doi: 10.1128/mcb.8.8.3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ford L. P., Bagga P. S., Wilusz J. The poly(A) tail inhibits the assembly of a 3'-to-5' exonuclease in an in vitro RNA stability system. Mol Cell Biol. 1997 Jan;17(1):398–406. doi: 10.1128/mcb.17.1.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fromont-Racine M., Bertrand E., Pictet R., Grange T. A highly sensitive method for mapping the 5' termini of mRNAs. Nucleic Acids Res. 1993 Apr 11;21(7):1683–1684. doi: 10.1093/nar/21.7.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gupta P., Rosen J. M., D'Eustachio P., Ruddle F. H. Localization of the casein gene family to a single mouse chromosome. J Cell Biol. 1982 Apr;93(1):199–204. doi: 10.1083/jcb.93.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guyette W. A., Matusik R. J., Rosen J. M. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979 Aug;17(4):1013–1023. doi: 10.1016/0092-8674(79)90340-4. [DOI] [PubMed] [Google Scholar]
  14. Görlach M., Burd C. G., Dreyfuss G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res. 1994 Apr;211(2):400–407. doi: 10.1006/excr.1994.1104. [DOI] [PubMed] [Google Scholar]
  15. Hepler J. E., Van Wyk J. J., Lund P. K. Different half-lives of insulin-like growth factor I mRNAs that differ in length of 3' untranslated sequence. Endocrinology. 1990 Sep;127(3):1550–1552. doi: 10.1210/endo-127-3-1550. [DOI] [PubMed] [Google Scholar]
  16. Jackson R. J., Standart N. Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell. 1990 Jul 13;62(1):15–24. doi: 10.1016/0092-8674(90)90235-7. [DOI] [PubMed] [Google Scholar]
  17. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  18. Kim J. Y., Mizoguchi Y., Yamaguchi H., Enami J., Sakai S. Removal of milk by suckling acutely increases the prolactin receptor gene expression in the lactating mouse mammary gland. Mol Cell Endocrinol. 1997 Jul 4;131(1):31–38. doi: 10.1016/s0303-7207(97)00086-5. [DOI] [PubMed] [Google Scholar]
  19. Körner C. G., Wahle E. Poly(A) tail shortening by a mammalian poly(A)-specific 3'-exoribonuclease. J Biol Chem. 1997 Apr 18;272(16):10448–10456. doi: 10.1074/jbc.272.16.10448. [DOI] [PubMed] [Google Scholar]
  20. Laird-Offringa I. A., de Wit C. L., Elfferich P., van der Eb A. J. Poly(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol Cell Biol. 1990 Dec;10(12):6132–6140. doi: 10.1128/mcb.10.12.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lesueur L., Edery M., Ali S., Paly J., Kelly P. A., Djiane J. Comparison of long and short forms of the prolactin receptor on prolactin-induced milk protein gene transcription. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):824–828. doi: 10.1073/pnas.88.3.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maruyama I. N., Rakow T. L., Maruyama H. I. cRACE: a simple method for identification of the 5' end of mRNAs. Nucleic Acids Res. 1995 Sep 25;23(18):3796–3797. doi: 10.1093/nar/23.18.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mercer J. F., Wake S. A. An analysis of the rate of metallothionein mRNA poly(A)-shortening using RNA blot hybridization. Nucleic Acids Res. 1985 Nov 25;13(22):7929–7943. doi: 10.1093/nar/13.22.7929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mercier J. C., Vilotte J. L. Structure and function of milk protein genes. J Dairy Sci. 1993 Oct;76(10):3079–3098. doi: 10.3168/jds.S0022-0302(93)77647-X. [DOI] [PubMed] [Google Scholar]
  25. Mizoguchi Y., Yamaguchi H., Aoki F., Enami J., Sakai S. Corticosterone is required for the prolactin receptor gene expression in the late pregnant mouse mammary gland. Mol Cell Endocrinol. 1997 Sep 19;132(1-2):177–183. doi: 10.1016/s0303-7207(97)00134-2. [DOI] [PubMed] [Google Scholar]
  26. Mooradian A. D., Shah G. N. Age-related changes in glucose transporter-one mRNA structure and function. Proc Soc Exp Biol Med. 1997 Dec;216(3):380–385. doi: 10.3181/00379727-216-44185. [DOI] [PubMed] [Google Scholar]
  27. Poyet P., Henning S. J., Rosen J. M. Hormone-dependent beta-casein mRNA stabilization requires ongoing protein synthesis. Mol Endocrinol. 1989 Dec;3(12):1961–1968. doi: 10.1210/mend-3-12-1961. [DOI] [PubMed] [Google Scholar]
  28. Preiss T., Hentze M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature. 1998 Apr 2;392(6675):516–520. doi: 10.1038/33192. [DOI] [PubMed] [Google Scholar]
  29. Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 1996 May;12(5):171–175. doi: 10.1016/0168-9525(96)10016-0. [DOI] [PubMed] [Google Scholar]
  30. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sabath D. E., Broome H. E., Prystowsky M. B. Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2-induced transcript in a cloned T-helper lymphocyte. Gene. 1990 Jul 16;91(2):185–191. doi: 10.1016/0378-1119(90)90087-8. [DOI] [PubMed] [Google Scholar]
  32. Sachs A. B., Davis R. W., Kornberg R. D. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol. 1987 Sep;7(9):3268–3276. doi: 10.1128/mcb.7.9.3268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sachs A. B., Sarnow P., Hentze M. W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997 Jun 13;89(6):831–838. doi: 10.1016/s0092-8674(00)80268-8. [DOI] [PubMed] [Google Scholar]
  34. Sasaki M., Sasaki T., Enami J. Prolactin-dependent growth and gamma-casein gene expression in Ba/F3 cells transfected with a long form of mouse mammary prolactin receptor. Endocr J. 1996 Feb;43(1):45–52. doi: 10.1507/endocrj.43.45. [DOI] [PubMed] [Google Scholar]
  35. Sasaki T., Sasaki M., Enami J. Mouse gamma-casein cDNA: PCR cloning and sequence analysis. Zoolog Sci. 1993 Feb;10(1):65–72. [PubMed] [Google Scholar]
  36. Shah G. N., Mooradian A. D. Age-related shortening of poly(A) tail of albumin mRNA. Arch Biochem Biophys. 1995 Dec 1;324(1):105–110. doi: 10.1006/abbi.1995.9922. [DOI] [PubMed] [Google Scholar]
  37. Staton J. M., Leedman P. J. Posttranscriptional regulation of thyrotropin beta-subunit messenger ribonucleic acid by thyroid hormone in murine thyrotrope tumor cells: a conserved mechanism across species. Endocrinology. 1998 Mar;139(3):1093–1100. doi: 10.1210/endo.139.3.5799. [DOI] [PubMed] [Google Scholar]
  38. Travers M. T., Barber M. C., Tonner E., Quarrie L., Wilde C. J., Flint D. J. The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: relationships to milk synthesis and secretion. Endocrinology. 1996 May;137(5):1530–1539. doi: 10.1210/endo.137.5.8612482. [DOI] [PubMed] [Google Scholar]
  39. Vonderhaar B. K., Ziska S. E. Hormonal regulation of milk protein gene expression. Annu Rev Physiol. 1989;51:641–652. doi: 10.1146/annurev.ph.51.030189.003233. [DOI] [PubMed] [Google Scholar]
  40. Wakiyama M., Futami T., Miura K. Poly(A) dependent translation in rabbit reticulocyte lysate. Biochimie. 1997 Dec;79(12):781–785. doi: 10.1016/s0300-9084(97)86937-4. [DOI] [PubMed] [Google Scholar]
  41. Wilson T., Treisman R. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. Nature. 1988 Nov 24;336(6197):396–399. doi: 10.1038/336396a0. [DOI] [PubMed] [Google Scholar]
  42. Wreschner D. H., Rechavi G. Differential mRNA stability to reticulocyte ribonucleases correlates with 3' non-coding (U)nA sequences. Eur J Biochem. 1988 Mar 1;172(2):333–340. doi: 10.1111/j.1432-1033.1988.tb13891.x. [DOI] [PubMed] [Google Scholar]
  43. Yoshimura M., Banerjee M. R., Oka T. Nucleotide sequence of a cDNA encoding mouse beta casein. Nucleic Acids Res. 1986 Oct 24;14(20):8224–8224. doi: 10.1093/nar/14.20.8224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zeigler M. E., Wicha M. S. Posttranscriptional regulation of alpha-casein mRNA accumulation by laminin. Exp Cell Res. 1992 Jun;200(2):481–489. doi: 10.1016/0014-4827(92)90199-i. [DOI] [PubMed] [Google Scholar]
  45. de Luis O., del Mazo J. Gene expression of mouse M1 and M2 pyruvate kinase isoenzymes correlates with differential poly[A] tract extension of their mRNAs during the development of spermatogenesis. Biochim Biophys Acta. 1998 Mar 13;1396(3):294–305. doi: 10.1016/s0167-4781(97)00195-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES