Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Apr 15;347(Pt 2):593–600. doi: 10.1042/0264-6021:3470593

Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization.

T J Collins 1, P Lipp 1, M J Berridge 1, W Li 1, M D Bootman 1
PMCID: PMC1220994  PMID: 10749691

Abstract

We investigated the consequences of depolarizing the mitochondrial membrane potential (Deltapsi(mit)) on Ca(2+) signals arising via inositol 1,4,5-trisphosphate receptors (InsP(3)R) in hormone-stimulated HeLa cells. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or a mixture of antimycin A+oligomycin were found to rapidly depolarize Deltapsi(mit). Mitochondrial depolarization enhanced the number of cells responding to a brief application of a Ca(2+)-mobilizing hormone and prolonged the recovery of cytosolic Ca(2+) after washout of the hormone; effects consistent with the removal of a passive Ca(2+) buffer. However, with repeated application of the same hormone concentration both the number of responsive cells and peak Ca(2+) changes were observed to progressively decline. The inhibition of Ca(2+) signalling was observed using different Ca(2+)-mobilizing hormones and also with a membrane-permeant Ins(1,4,5)P(3) ester. Upon washout of FCCP, the Ca(2+) signals recovered with a time course similar to the re-establishment of Deltapsi(mit). Global measurements indicated that none of the obvious factors such as changes in pH, ATP concentration, cellular redox state, permeability transition pore activation or reduction in Ca(2+)-store loading appeared to underlie the inhibition of Ca(2+) signalling. We therefore suggest that local changes in one or more of these factors, as a consequence of depolarizing Deltapsi(mit), prevents InsP(3)R activation.

Full Text

The Full Text of this article is available as a PDF (182.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock D. F., Herrington J., Goodwin P. C., Park Y. B., Hille B. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol. 1997 Feb 24;136(4):833–844. doi: 10.1083/jcb.136.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernardi P., Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr. 1996 Apr;28(2):131–138. doi: 10.1007/BF02110643. [DOI] [PubMed] [Google Scholar]
  3. Boitier E., Rea R., Duchen M. R. Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol. 1999 May 17;145(4):795–808. doi: 10.1083/jcb.145.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bootman M. D., Berridge M. J. Subcellular Ca2+ signals underlying waves and graded responses in HeLa cells. Curr Biol. 1996 Jul 1;6(7):855–865. doi: 10.1016/s0960-9822(02)00609-7. [DOI] [PubMed] [Google Scholar]
  5. Bootman M. D., Cheek T. R., Moreton R. B., Bennett D. L., Berridge M. J. Smoothly graded Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. J Biol Chem. 1994 Oct 7;269(40):24783–24791. [PubMed] [Google Scholar]
  6. Bootman M. D., Missiaen L., Parys J. B., De Smedt H., Casteels R. Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem J. 1995 Mar 1;306(Pt 2):445–451. doi: 10.1042/bj3060445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bootman M. D. Quantal Ca2+ release from InsP3-sensitive intracellular Ca2+ stores. Mol Cell Endocrinol. 1994 Jan;98(2):157–166. doi: 10.1016/0303-7207(94)90134-1. [DOI] [PubMed] [Google Scholar]
  8. Bootman M. D., Taylor C. W., Berridge M. J. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1992 Dec 15;267(35):25113–25119. [PubMed] [Google Scholar]
  9. Duchen M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 1999 Apr 1;516(Pt 1):1–17. doi: 10.1111/j.1469-7793.1999.001aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evtodienko YuV, Teplova V., Khawaja J., Saris N. E. The Ca(2+)-induced permeability transition pore is involved in Ca(2+)-induced mitochondrial oscillations. A study on permeabilised Ehrlich ascites tumour cells. Cell Calcium. 1994 Feb;15(2):143–152. doi: 10.1016/0143-4160(94)90053-1. [DOI] [PubMed] [Google Scholar]
  11. Gamberucci A., Innocenti B., Fulceri R., Bànhegyi G., Giunti R., Pozzan T., Benedetti A. Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem. 1994 Sep 23;269(38):23597–23602. [PubMed] [Google Scholar]
  12. Guillemette G., Segui J. A. Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol Endocrinol. 1988 Dec;2(12):1249–1255. doi: 10.1210/mend-2-12-1249. [DOI] [PubMed] [Google Scholar]
  13. Gunter K. K., Gunter T. E. Transport of calcium by mitochondria. J Bioenerg Biomembr. 1994 Oct;26(5):471–485. doi: 10.1007/BF00762732. [DOI] [PubMed] [Google Scholar]
  14. Hajnóczky G., Hager R., Thomas A. P. Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem. 1999 May 14;274(20):14157–14162. doi: 10.1074/jbc.274.20.14157. [DOI] [PubMed] [Google Scholar]
  15. Hajnóczky G., Robb-Gaspers L. D., Seitz M. B., Thomas A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995 Aug 11;82(3):415–424. doi: 10.1016/0092-8674(95)90430-1. [DOI] [PubMed] [Google Scholar]
  16. Hoth M., Fanger C. M., Lewis R. S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol. 1997 May 5;137(3):633–648. doi: 10.1083/jcb.137.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  18. Ichas F., Jouaville L. S., Sidash S. S., Mazat J. P., Holmuhamedov E. L. Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett. 1994 Jul 11;348(2):211–215. doi: 10.1016/0014-5793(94)00615-6. [DOI] [PubMed] [Google Scholar]
  19. Jouaville L. S., Ichas F., Holmuhamedov E. L., Camacho P., Lechleiter J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature. 1995 Oct 5;377(6548):438–441. doi: 10.1038/377438a0. [DOI] [PubMed] [Google Scholar]
  20. Kinnally K. W., Lohret T. A., Campo M. L., Mannella C. A. Perspectives on the mitochondrial multiple conductance channel. J Bioenerg Biomembr. 1996 Apr;28(2):115–123. doi: 10.1007/BF02110641. [DOI] [PubMed] [Google Scholar]
  21. Kowaltowski A. J., Castilho R. F., Vercesi A. E. Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am J Physiol. 1995 Jul;269(1 Pt 1):C141–C147. doi: 10.1152/ajpcell.1995.269.1.C141. [DOI] [PubMed] [Google Scholar]
  22. Landolfi B., Curci S., Debellis L., Pozzan T., Hofer A. M. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured In situ in intact cells. J Cell Biol. 1998 Sep 7;142(5):1235–1243. doi: 10.1083/jcb.142.5.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lawrie A. M., Rizzuto R., Pozzan T., Simpson A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem. 1996 May 3;271(18):10753–10759. doi: 10.1074/jbc.271.18.10753. [DOI] [PubMed] [Google Scholar]
  24. Leyssens A., Nowicky A. V., Patterson L., Crompton M., Duchen M. R. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol. 1996 Oct 1;496(Pt 1):111–128. doi: 10.1113/jphysiol.1996.sp021669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mak D. O., McBride S., Foskett J. K. ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca(2+) activation. J Biol Chem. 1999 Aug 6;274(32):22231–22237. doi: 10.1074/jbc.274.32.22231. [DOI] [PubMed] [Google Scholar]
  26. McCarron J. G., Muir T. C. Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle. J Physiol. 1999 Apr 1;516(Pt 1):149–161. doi: 10.1111/j.1469-7793.1999.149aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mignotte B., Vayssiere J. L. Mitochondria and apoptosis. Eur J Biochem. 1998 Feb 15;252(1):1–15. doi: 10.1046/j.1432-1327.1998.2520001.x. [DOI] [PubMed] [Google Scholar]
  28. Muallem S., Pandol S. J., Beeker T. G. Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem. 1989 Jan 5;264(1):205–212. [PubMed] [Google Scholar]
  29. Murphy E., Steenbergen C., Levy L. A., Raju B., London R. E. Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem. 1989 Apr 5;264(10):5622–5627. [PubMed] [Google Scholar]
  30. Nicotera P., Orrenius S. The role of calcium in apoptosis. Cell Calcium. 1998 Feb-Mar;23(2-3):173–180. doi: 10.1016/s0143-4160(98)90116-6. [DOI] [PubMed] [Google Scholar]
  31. Parys J. B., Missiaen L., Smedt H. D., Sienaert I., Casteels R. Mechanisms responsible for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores. Pflugers Arch. 1996 Jul;432(3):359–367. doi: 10.1007/s004240050145. [DOI] [PubMed] [Google Scholar]
  32. Reers M., Smiley S. T., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 1995;260:406–417. doi: 10.1016/0076-6879(95)60154-6. [DOI] [PubMed] [Google Scholar]
  33. Renard D. C., Seitz M. B., Thomas A. P. Oxidized glutathione causes sensitization of calcium release to inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J. 1992 Jun 1;284(Pt 2):507–512. doi: 10.1042/bj2840507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  35. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
  36. Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997 Jul 7;411(1):77–82. doi: 10.1016/s0014-5793(97)00669-8. [DOI] [PubMed] [Google Scholar]
  37. Silverman H. S., Di Lisa F., Hui R. C., Miyata H., Sollott S. J., Hanford R. G., Lakatta E. G., Stern M. D. Regulation of intracellular free Mg2+ and contraction in single adult mammalian cardiac myocytes. Am J Physiol. 1994 Jan;266(1 Pt 1):C222–C233. doi: 10.1152/ajpcell.1994.266.1.C222. [DOI] [PubMed] [Google Scholar]
  38. Simpson P. B., Russell J. T. Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem. 1996 Dec 27;271(52):33493–33501. doi: 10.1074/jbc.271.52.33493. [DOI] [PubMed] [Google Scholar]
  39. Tsukioka M., Iino M., Endo M. pH dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized smooth muscle cells of the guinea-pig. J Physiol. 1994 Mar 15;475(3):369–375. doi: 10.1113/jphysiol.1994.sp020078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tsunoda Y., Yoshida H., Owyang C. Intracellular control of IP3-independent Ca2+ oscillations in pancreatic acini. Biochem Biophys Res Commun. 1996 May 15;222(2):265–272. doi: 10.1006/bbrc.1996.0733. [DOI] [PubMed] [Google Scholar]
  41. Wood P. G., Gillespie J. I. Evidence for mitochondrial Ca(2+)-induced Ca2+ release in permeabilised endothelial cells. Biochem Biophys Res Commun. 1998 May 19;246(2):543–548. doi: 10.1006/bbrc.1998.8661. [DOI] [PubMed] [Google Scholar]
  42. Zamzami N., Marchetti P., Castedo M., Hirsch T., Susin S. A., Masse B., Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996 Apr 8;384(1):53–57. doi: 10.1016/0014-5793(96)00280-3. [DOI] [PubMed] [Google Scholar]
  43. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]
  44. Zorov D. B., Krasnikov B. F., Kuzminova A. E., Vysokikh MYu, Zorova L. D. Mitochondria revisited. Alternative functions of mitochondria. Biosci Rep. 1997 Dec;17(6):507–520. doi: 10.1023/a:1027304122259. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES