Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):643–651.

Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes.

T Bengtsson 1, B Cannon 1, J Nedergaard 1
PMCID: PMC1220999  PMID: 10769166

Abstract

In brown adipocytes, fundamental cellular processes (cell proliferation, differentiation and apoptosis) are regulated by adrenergic stimulation, notably through beta-adrenergic receptors. The presence of all three beta-receptor subtypes has been demonstrated in brown adipose tissue. Due to the significance of the action of these receptors and indications that the subtypes govern different processes, the adrenergic regulation of the expression of the beta(1)-(,) beta(2)- and beta(3)-adrenoceptor genes was examined in murine brown-fat primary cell cultures. Moderate levels of beta(1)-receptor mRNA, absence of beta(2)-receptor mRNA and high levels of beta(3)-receptor mRNA were observed in mature brown adipocytes (day 6 in culture). Noradrenaline (norepinephrine) addition led to diametrically opposite effects on beta(1)- (markedly enhanced expression) and beta(3)-gene expression (full cessation of expression, as previously shown). beta(2)-Gene expression was induced by noradrenaline, but only transiently (<1 h). The apparent affinities (EC(50)) of noradrenaline were clearly different (7 nM for the beta(1)-gene and</=1 nM for the beta(3)-gene), as were the mediation pathways (solely via beta(3)-receptors and cAMP for the beta(1)-gene and via beta(3)-receptors and cAMP, as well as via alpha(1)-receptors and protein kinase C, for the beta(3)-gene). The half-lives of the corresponding mRNA species were very short but different (17 min for beta(1)-mRNA and 27 min for beta(3)-mRNA), and these degradation rates were not affected by noradrenaline, implying that the mRNA levels were controlled by transcription. Inhibition of protein synthesis also led to diametrically opposite effects on beta(1)- and beta(3)-gene expression, but - notably - these effects were congruent with the noradrenaline effects, implying that a common factor regulating beta(1)-gene expression negatively and beta(3)-gene expression positively could be envisaged. In conclusion, very divergent effects of adrenergic stimulation on the expression of the different beta-receptor genes were found within one cell type, and no unifying concept of adrenergic control of beta-receptor gene expression can be formulated, either concerning different cell types, or concerning the different beta-receptor subtype genes.

Full Text

The Full Text of this article is available as a PDF (168.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Kaumann A. J. Beta 3 and atypical beta-adrenoceptors. Med Res Rev. 1993 Nov;13(6):663–729. doi: 10.1002/med.2610130604. [DOI] [PubMed] [Google Scholar]
  2. Arch J. R. The brown adipocyte beta-adrenoceptor. Proc Nutr Soc. 1989 Jul;48(2):215–223. doi: 10.1079/pns19890032. [DOI] [PubMed] [Google Scholar]
  3. Bahouth S. W., Cui X., Beauchamp M. J., Shimomura H., George S. T., Park E. A. Promoter analysis of the rat beta1-adrenergic receptor gene identifies sequences involved in basal expression. Mol Pharmacol. 1997 Apr;51(4):620–629. doi: 10.1124/mol.51.4.620. [DOI] [PubMed] [Google Scholar]
  4. Bengtsson T., Redegren K., Strosberg A. D., Nedergaard J., Cannon B. Down-regulation of beta3 adrenoreceptor gene expression in brown fat cells is transient and recovery is dependent upon a short-lived protein factor. J Biol Chem. 1996 Dec 27;271(52):33366–33375. doi: 10.1074/jbc.271.52.33366. [DOI] [PubMed] [Google Scholar]
  5. Bronnikov G., Bengtsson T., Kramarova L., Golozoubova V., Cannon B., Nedergaard J. beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology. 1999 Sep;140(9):4185–4197. doi: 10.1210/endo.140.9.6972. [DOI] [PubMed] [Google Scholar]
  6. Bronnikov G., Houstek J., Nedergaard J. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors. J Biol Chem. 1992 Jan 25;267(3):2006–2013. [PubMed] [Google Scholar]
  7. Cannon B., Nedergaard J., Lundberg J. M., Hökfelt T., Terenius L., Goldstein M. 'Neuropeptide tyrosine' (NPY) is co-stored with noradrenaline in vascular but not in parenchymal sympathetic nerves of brown adipose tissue. Exp Cell Res. 1986 Jun;164(2):546–550. doi: 10.1016/0014-4827(86)90052-2. [DOI] [PubMed] [Google Scholar]
  8. Carter D. A. Up-regulation of beta 1-adrenoceptor messenger ribonucleic acid in the rat pineal gland: nocturnally, through a beta-adrenoceptor-linked mechanism, and in vitro, through a novel posttranscriptional mechanism activated by specific protein synthesis inhibitors. Endocrinology. 1993 Nov;133(5):2263–2268. doi: 10.1210/endo.133.5.8404679. [DOI] [PubMed] [Google Scholar]
  9. Champigny O., Holloway B. R., Ricquier D. Regulation of UCP gene expression in brown adipocytes differentiated in primary culture. Effects of a new beta-adrenoceptor agonist. Mol Cell Endocrinol. 1992 Jul;86(1-2):73–82. doi: 10.1016/0303-7207(92)90177-8. [DOI] [PubMed] [Google Scholar]
  10. Collins S., Bouvier M., Bolanowski M. A., Caron M. G., Lefkowitz R. J. cAMP stimulates transcription of the beta 2-adrenergic receptor gene in response to short-term agonist exposure. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4853–4857. doi: 10.1073/pnas.86.13.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Collins S., Daniel K. W., Rohlfs E. M., Ramkumar V., Taylor I. L., Gettys T. W. Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol Endocrinol. 1994 Apr;8(4):518–527. doi: 10.1210/mend.8.4.7914350. [DOI] [PubMed] [Google Scholar]
  12. Emorine L. J., Marullo S., Delavier-Klutchko C., Kaveri S. V., Durieu-Trautmann O., Strosberg A. D. Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6995–6999. doi: 10.1073/pnas.84.20.6995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fitzgerald L. R., Li Z., Machida C. A., Fishman P. H., Duman R. S. Adrenergic regulation of ICER (inducible cyclic AMP early repressor) and beta1-adrenergic receptor gene expression in C6 glioma cells. J Neurochem. 1996 Aug;67(2):490–497. doi: 10.1046/j.1471-4159.1996.67020490.x. [DOI] [PubMed] [Google Scholar]
  14. Flaim K. E., Horwitz B. A., Horowitz J. M. Coupling of signals to brown fat: alpha- and beta-adrenergic responses in intact rats. Am J Physiol. 1977 Mar;232(3):R101–R109. doi: 10.1152/ajpregu.1977.232.3.R101. [DOI] [PubMed] [Google Scholar]
  15. Frielle T., Collins S., Daniel K. W., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7920–7924. doi: 10.1073/pnas.84.22.7920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fujimoto S., Itoh T. Contraction and relaxation responses of femoral artery and aorta to norepinephrine in young rats. Gen Pharmacol. 1996 Dec;27(8):1355–1359. doi: 10.1016/s0306-3623(96)00078-x. [DOI] [PubMed] [Google Scholar]
  17. Fève B., Emorine L. J., Briend-Sutren M. M., Lasnier F., Strosberg A. D., Pairault J. Differential regulation of beta 1- and beta 2-adrenergic receptor protein and mRNA levels by glucocorticoids during 3T3-F442A adipose differentiation. J Biol Chem. 1990 Sep 25;265(27):16343–16349. [PubMed] [Google Scholar]
  18. Fève B., Piétri-Rouxel F., el Hadri K., Drumare M. F., Strosberg A. D. Long term phorbol ester treatment down-regulates the beta 3-adrenergic receptor in 3T3-F442A adipocytes. J Biol Chem. 1995 May 5;270(18):10952–10959. doi: 10.1074/jbc.270.18.10952. [DOI] [PubMed] [Google Scholar]
  19. Granneman J. G., Lahners K. N. Regulation of mouse beta 3-adrenergic receptor gene expression and mRNA splice variants in adipocytes. Am J Physiol. 1995 Apr;268(4 Pt 1):C1040–C1044. doi: 10.1152/ajpcell.1995.268.4.C1040. [DOI] [PubMed] [Google Scholar]
  20. Hosoda K., Feussner G. K., Rydelek-Fitzgerald L., Fishman P. H., Duman R. S. Agonist and cyclic AMP-mediated regulation of beta 1-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells. J Neurochem. 1994 Nov;63(5):1635–1645. doi: 10.1046/j.1471-4159.1994.63051635.x. [DOI] [PubMed] [Google Scholar]
  21. Hough C., Chuang D. M. Differential down-regulation of beta 1- and beta 2-adrenergic receptor mRNA in C6 glioma cells. Biochem Biophys Res Commun. 1990 Jul 16;170(1):46–52. doi: 10.1016/0006-291x(90)91238-n. [DOI] [PubMed] [Google Scholar]
  22. Klaus S., Muzzin P., Revelli J. P., Cawthorne M. A., Giacobino J. P., Ricquier D. Control of beta 3-adrenergic receptor gene expression in brown adipocytes in culture. Mol Cell Endocrinol. 1995 Apr 1;109(2):189–195. doi: 10.1016/0303-7207(95)03502-x. [DOI] [PubMed] [Google Scholar]
  23. Kopecký J., Baudysová M., Zanotti F., Janíková D., Pavelka S., Houstek J. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture. J Biol Chem. 1990 Dec 25;265(36):22204–22209. [PubMed] [Google Scholar]
  24. Levin B. E., Sullivan A. C. Beta-1 receptor is the predominant beta-adrenoreceptor on rat brown adipose tissue. J Pharmacol Exp Ther. 1986 Mar;236(3):681–688. [PubMed] [Google Scholar]
  25. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue. Erk1/2 promotes norepinephrine-dependent cell survival. J Biol Chem. 1998 Nov 13;273(46):30147–30156. doi: 10.1074/jbc.273.46.30147. [DOI] [PubMed] [Google Scholar]
  26. Mohell N., Dicker A. The beta-adrenergic radioligand [3H]CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J. 1989 Jul 15;261(2):401–405. doi: 10.1042/bj2610401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nahmias C., Blin N., Elalouf J. M., Mattei M. G., Strosberg A. D., Emorine L. J. Molecular characterization of the mouse beta 3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 1991 Dec;10(12):3721–3727. doi: 10.1002/j.1460-2075.1991.tb04940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nisoli E., Tonello C., Landi M., Carruba M. O. Functional studies of the first selective beta 3-adrenergic receptor antagonist SR 59230A in rat brown adipocytes. Mol Pharmacol. 1996 Jan;49(1):7–14. [PubMed] [Google Scholar]
  29. Néchad M., Kuusela P., Carneheim C., Björntorp P., Nedergaard J., Cannon B. Development of brown fat cells in monolayer culture. I. Morphological and biochemical distinction from white fat cells in culture. Exp Cell Res. 1983 Nov;149(1):105–118. doi: 10.1016/0014-4827(83)90384-1. [DOI] [PubMed] [Google Scholar]
  30. Néchad M., Nedergaard J., Cannon B. Noradrenergic stimulation of mitochondriogenesis in brown adipocytes differentiating in culture. Am J Physiol. 1987 Dec;253(6 Pt 1):C889–C894. doi: 10.1152/ajpcell.1987.253.6.C889. [DOI] [PubMed] [Google Scholar]
  31. Picó C., Herron D., Palou A., Jacobsson A., Cannon B., Nedergaard J. Stabilization of the mRNA for the uncoupling protein thermogenin by transcriptional/translational blockade and by noradrenaline in brown adipocytes differentiated in culture: a degradation factor induced by cessation of stimulation? Biochem J. 1994 Aug 15;302(Pt 1):81–86. doi: 10.1042/bj3020081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Puigserver P., Herron D., Gianotti M., Palou A., Cannon B., Nedergaard J. Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem J. 1992 Jun 1;284(Pt 2):393–398. doi: 10.1042/bj2840393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Raasmaja A., York D. A. Alpha 1- and beta-adrenergic receptors in brown adipose tissue of lean (Fa/?) and obese (fa/fa) Zucker rats. Effects of cold-acclimation, sucrose feeding and adrenalectomy. Biochem J. 1988 Feb 1;249(3):831–838. doi: 10.1042/bj2490831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rehnmark S., Néchad M., Herron D., Cannon B., Nedergaard J. Alpha- and beta-adrenergic induction of the expression of the uncoupling protein thermogenin in brown adipocytes differentiated in culture. J Biol Chem. 1990 Sep 25;265(27):16464–16471. [PubMed] [Google Scholar]
  35. Revelli J. P., Muzzin P., Giacobino J. P. Modulation in vivo of beta-adrenergic-receptor subtypes in rat brown adipose tissue by the thermogenic agonist Ro 16-8714. Biochem J. 1992 Sep 15;286(Pt 3):743–746. doi: 10.1042/bj2860743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rohlfs E. M., Daniel K. W., Premont R. T., Kozak L. P., Collins S. Regulation of the uncoupling protein gene (Ucp) by beta 1, beta 2, and beta 3-adrenergic receptor subtypes in immortalized brown adipose cell lines. J Biol Chem. 1995 May 5;270(18):10723–10732. doi: 10.1074/jbc.270.18.10723. [DOI] [PubMed] [Google Scholar]
  37. Rothwell N. J., Stock M. J., Sudera D. K. Beta-adrenoreceptors in rat brown adipose tissue: proportions of beta 1- and beta 2-subtypes. Am J Physiol. 1985 Apr;248(4 Pt 1):E397–E402. doi: 10.1152/ajpendo.1985.248.4.E397. [DOI] [PubMed] [Google Scholar]
  38. Rovati G. E., Nicosia S. Lower efficacy: interaction with an inhibitory receptor or partial agonism? Trends Pharmacol Sci. 1994 May;15(5):140–144. doi: 10.1016/0165-6147(94)90073-6. [DOI] [PubMed] [Google Scholar]
  39. Searles R. P., Midson C. N., Nipper V. J., Machida C. A. Transcription of the rat beta 1-adrenergic receptor gene. Characterization of the transcript and identification of important sequences. J Biol Chem. 1995 Jan 6;270(1):157–162. doi: 10.1074/jbc.270.1.157. [DOI] [PubMed] [Google Scholar]
  40. Thomas R. F., Holt B. D., Schwinn D. A., Liggett S. B. Long-term agonist exposure induces upregulation of beta 3-adrenergic receptor expression via multiple cAMP response elements. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4490–4494. doi: 10.1073/pnas.89.10.4490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tseng Y. T., Waschek J. A., Padbury J. F. Functional analysis of the 5' flanking sequence in the ovine beta 1-adrenergic receptor gene. Biochem Biophys Res Commun. 1995 Oct 13;215(2):606–612. doi: 10.1006/bbrc.1995.2507. [DOI] [PubMed] [Google Scholar]
  42. Yamashita H., Sato N., Kizaki T., Oh-ishi S., Segawa M., Saitoh D., Ohira Y., Ohno H. Norepinephrine stimulates the expression of fibroblast growth factor 2 in rat brown adipocyte primary culture. Cell Growth Differ. 1995 Nov;6(11):1457–1462. [PubMed] [Google Scholar]
  43. Young J. B., Saville E., Rothwell N. J., Stock M. J., Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J Clin Invest. 1982 May;69(5):1061–1071. doi: 10.1172/JCI110541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhao J., Unelius L., Bengtsson T., Cannon B., Nedergaard J. Coexisting beta-adrenoceptor subtypes: significance for thermogenic process in brown fat cells. Am J Physiol. 1994 Oct;267(4 Pt 1):C969–C979. doi: 10.1152/ajpcell.1994.267.4.C969. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES