Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):653–660.

Identification of a C-terminal cdc25 sequence required for promotion of germinal vesicle breakdown.

E A Powers 1, D P Thompson 1, P A Garner-Hamrick 1, W He 1, A W Yem 1, C A Bannow 1, D J Staples 1, G A Waszak 1, C W Smith 1, M R Deibel Jr 1, C Fisher 1
PMCID: PMC1221000  PMID: 10769167

Abstract

Glutathione S-transferase (GST)-cdc25B(31-566) induced germinal vesicle breakdown (GVBD) when microinjected into Xenopus oocytes. Purified, N-terminally truncated forms of cdc25B did not induce GVBD, even though many had phosphatase activity and activated cdc2 in vitro. N-terminally truncated forms of cdc25B inhibited induction of GVBD by longer forms of the enzyme suggesting a direct interaction in vivo. cdc25B(356-556), but not cdc25B(364-529), inhibited GVBD induction by GST-cdc25B(31-566) suggesting that a region of cdc25B near to the C-terminus was responsible for the inhibition. To determine the region of peptide sequence that was inhibitory, cdc25B(356-556) was subjected to proteolysis with endoproteinase lys-C. Following a demonstration that the resulting peptide mixture inhibited GST-cdc25B-dependent GVBD, a series of peptides spanning amino acids at the C-terminus were synthesized. The peptide TRSWAGERSR inhibited GVBD induced by GST-cdc25B. An alanine scan of the peptide revealed residues critical for GVBD inhibition, and site-directed mutagenesis of the corresponding residues in GST-cdc25B(31-566) eliminated its ability to induce GVBD. These results demonstrate that a cdc25B C-terminal domain, involved in dominant-negative inhibition of GVBD-competent cdc25B, is required for induction of GVBD following microinjection into oocytes.

Full Text

The Full Text of this article is available as a PDF (270.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeliovich H., Shlomai J. Reversible oxidative aggregation obstructs specific proteolytic cleavage of glutathione S-transferase fusion proteins. Anal Biochem. 1995 Jul 1;228(2):351–354. doi: 10.1006/abio.1995.1363. [DOI] [PubMed] [Google Scholar]
  2. Abrieu A., Brassac T., Galas S., Fisher D., Labbé J. C., Dorée M. The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci. 1998 Jun;111(Pt 12):1751–1757. doi: 10.1242/jcs.111.12.1751. [DOI] [PubMed] [Google Scholar]
  3. Alewood P., Alewood D., Miranda L., Love S., Meutermans W., Wilson D. Rapid in situ neutralization protocols for Boc and Fmoc solid-phase chemistries. Methods Enzymol. 1997;289:14–29. doi: 10.1016/s0076-6879(97)89041-6. [DOI] [PubMed] [Google Scholar]
  4. Baldin V., Cans C., Superti-Furga G., Ducommun B. Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control? Oncogene. 1997 May 22;14(20):2485–2495. doi: 10.1038/sj.onc.1201063. [DOI] [PubMed] [Google Scholar]
  5. Blasina A., de Weyer I. V., Laus M. C., Luyten W. H., Parker A. E., McGowan C. H. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol. 1999 Jan 14;9(1):1–10. doi: 10.1016/s0960-9822(99)80041-4. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Cans C., Ducommun B., Baldin V. Proteasome-dependent degradation of human CDC25B phosphatase. Mol Biol Rep. 1999 Apr;26(1-2):53–57. doi: 10.1023/a:1006912105352. [DOI] [PubMed] [Google Scholar]
  8. Conklin D. S., Galaktionov K., Beach D. 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7892–7896. doi: 10.1073/pnas.92.17.7892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crenshaw D. G., Yang J., Means A. R., Kornbluth S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 1998 Aug 10;17(5):1315–1327. doi: 10.1093/emboj/17.5.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cyert M. S., Kirschner M. W. Regulation of MPF activity in vitro. Cell. 1988 Apr 22;53(2):185–195. doi: 10.1016/0092-8674(88)90380-7. [DOI] [PubMed] [Google Scholar]
  11. Draetta G., Eckstein J. Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta. 1997 Apr 18;1332(2):M53–M63. doi: 10.1016/s0304-419x(96)00049-2. [DOI] [PubMed] [Google Scholar]
  12. Duchesne M., Schweighoffer F., Parker F., Clerc F., Frobert Y., Thang M. N., Tocqué B. Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science. 1993 Jan 22;259(5094):525–528. doi: 10.1126/science.7678707. [DOI] [PubMed] [Google Scholar]
  13. Dunphy W. G., Kumagai A. The cdc25 protein contains an intrinsic phosphatase activity. Cell. 1991 Oct 4;67(1):189–196. doi: 10.1016/0092-8674(91)90582-j. [DOI] [PubMed] [Google Scholar]
  14. Dunphy W. G., Newport J. W. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell. 1989 Jul 14;58(1):181–191. doi: 10.1016/0092-8674(89)90414-5. [DOI] [PubMed] [Google Scholar]
  15. Fattaey A., Booher R. N. Myt1: a Wee1-type kinase that phosphorylates Cdc2 on residue Thr14. Prog Cell Cycle Res. 1997;3:233–240. doi: 10.1007/978-1-4615-5371-7_18. [DOI] [PubMed] [Google Scholar]
  16. Fauman E. B., Cogswell J. P., Lovejoy B., Rocque W. J., Holmes W., Montana V. G., Piwnica-Worms H., Rink M. J., Saper M. A. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell. 1998 May 15;93(4):617–625. doi: 10.1016/s0092-8674(00)81190-3. [DOI] [PubMed] [Google Scholar]
  17. Furnari B., Rhind N., Russell P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science. 1997 Sep 5;277(5331):1495–1497. doi: 10.1126/science.277.5331.1495. [DOI] [PubMed] [Google Scholar]
  18. Galaktionov K., Beach D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell. 1991 Dec 20;67(6):1181–1194. doi: 10.1016/0092-8674(91)90294-9. [DOI] [PubMed] [Google Scholar]
  19. Galaktionov K., Beach D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell. 1991 Dec 20;67(6):1181–1194. doi: 10.1016/0092-8674(91)90294-9. [DOI] [PubMed] [Google Scholar]
  20. Galaktionov K., Jessus C., Beach D. Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev. 1995 May 1;9(9):1046–1058. doi: 10.1101/gad.9.9.1046. [DOI] [PubMed] [Google Scholar]
  21. Garner-Hamrick P. A., Fisher C. Antisense phosphorothioate oligonucleotides specifically down-regulate cdc25B causing S-phase delay and persistent antiproliferative effects. Int J Cancer. 1998 May 29;76(5):720–728. doi: 10.1002/(sici)1097-0215(19980529)76:5<720::aid-ijc18>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  22. Gautier J., Solomon M. J., Booher R. N., Bazan J. F., Kirschner M. W. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell. 1991 Oct 4;67(1):197–211. doi: 10.1016/0092-8674(91)90583-k. [DOI] [PubMed] [Google Scholar]
  23. Hoffmann I., Clarke P. R., Marcote M. J., Karsenti E., Draetta G. Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 1993 Jan;12(1):53–63. doi: 10.1002/j.1460-2075.1993.tb05631.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hoffmann I., Draetta G., Karsenti E. Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 1994 Sep 15;13(18):4302–4310. doi: 10.1002/j.1460-2075.1994.tb06750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Horiguchi T., Nishi K., Hakoda S., Tanida S., Nagata A., Okayama H. Dnacin A1 and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochem Pharmacol. 1994 Nov 29;48(11):2139–2141. doi: 10.1016/0006-2952(94)90516-9. [DOI] [PubMed] [Google Scholar]
  26. Izumi T., Maller J. L. Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol Biol Cell. 1993 Dec;4(12):1337–1350. doi: 10.1091/mbc.4.12.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jinno S., Suto K., Nagata A., Igarashi M., Kanaoka Y., Nojima H., Okayama H. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 1994 Apr 1;13(7):1549–1556. doi: 10.1002/j.1460-2075.1994.tb06417.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kakizuka A., Sebastian B., Borgmeyer U., Hermans-Borgmeyer I., Bolado J., Hunter T., Hoekstra M. F., Evans R. M. A mouse cdc25 homolog is differentially and developmentally expressed. Genes Dev. 1992 Apr;6(4):578–590. doi: 10.1101/gad.6.4.578. [DOI] [PubMed] [Google Scholar]
  29. Kaldis P., Russo A. A., Chou H. S., Pavletich N. P., Solomon M. J. Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell. 1998 Sep;9(9):2545–2560. doi: 10.1091/mbc.9.9.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Karaïskou A., Cayla X., Haccard O., Jessus C., Ozon R. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Exp Cell Res. 1998 Nov 1;244(2):491–500. doi: 10.1006/excr.1998.4220. [DOI] [PubMed] [Google Scholar]
  31. Kim S. H., Li C., Maller J. L. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol. 1999 Aug 15;212(2):381–391. doi: 10.1006/dbio.1999.9361. [DOI] [PubMed] [Google Scholar]
  32. Kumagai A., Dunphy W. G. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science. 1996 Sep 6;273(5280):1377–1380. doi: 10.1126/science.273.5280.1377. [DOI] [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Lammer C., Wagerer S., Saffrich R., Mertens D., Ansorge W., Hoffmann I. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci. 1998 Aug;111(Pt 16):2445–2453. doi: 10.1242/jcs.111.16.2445. [DOI] [PubMed] [Google Scholar]
  35. Lee M. S., Ogg S., Xu M., Parker L. L., Donoghue D. J., Maller J. L., Piwnica-Worms H. cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2. Mol Biol Cell. 1992 Jan;3(1):73–84. doi: 10.1091/mbc.3.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lopez-Girona A., Furnari B., Mondesert O., Russell P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature. 1999 Jan 14;397(6715):172–175. doi: 10.1038/16488. [DOI] [PubMed] [Google Scholar]
  37. Losardo J. E., Heimer E., Bekesi E., Prinzo K., Scheffler J. E., Neri A. Ras-dependent maturation of Xenopus oocytes is blocked by modified peptides of GTPase activating protein (GAP). Int J Pept Protein Res. 1995 Feb;45(2):194–199. doi: 10.1111/j.1399-3011.1995.tb01040.x. [DOI] [PubMed] [Google Scholar]
  38. Lu P. J., Zhou X. Z., Shen M., Lu K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999 Feb 26;283(5406):1325–1328. doi: 10.1126/science.283.5406.1325. [DOI] [PubMed] [Google Scholar]
  39. Morgan D. O. Principles of CDK regulation. Nature. 1995 Mar 9;374(6518):131–134. doi: 10.1038/374131a0. [DOI] [PubMed] [Google Scholar]
  40. Nagata A., Igarashi M., Jinno S., Suto K., Okayama H. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol. 1991 Oct;3(10):959–968. [PubMed] [Google Scholar]
  41. Nishijima H., Nishitani H., Seki T., Nishimoto T. A dual-specificity phosphatase Cdc25B is an unstable protein and triggers p34(cdc2)/cyclin B activation in hamster BHK21 cells arrested with hydroxyurea. J Cell Biol. 1997 Sep 8;138(5):1105–1116. doi: 10.1083/jcb.138.5.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Okazaki K., Hayashida K., Iwashita J., Harano M., Furuno N., Sagata N. Isolation of a cDNA encoding the X enopus homologue of mammalian Cdc25A that can induce meiotic maturation of oocytes. Gene. 1996 Oct 31;178(1-2):111–114. doi: 10.1016/0378-1119(96)00344-7. [DOI] [PubMed] [Google Scholar]
  43. Peng C. Y., Graves P. R., Thoma R. S., Wu Z., Shaw A. S., Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997 Sep 5;277(5331):1501–1505. doi: 10.1126/science.277.5331.1501. [DOI] [PubMed] [Google Scholar]
  44. Reynolds R. A., Yem A. W., Wolfe C. L., Deibel M. R., Jr, Chidester C. G., Watenpaugh K. D. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J Mol Biol. 1999 Oct 29;293(3):559–568. doi: 10.1006/jmbi.1999.3168. [DOI] [PubMed] [Google Scholar]
  45. Sadhu K., Reed S. I., Richardson H., Russell P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5139–5143. doi: 10.1073/pnas.87.13.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sanchez Y., Wong C., Thoma R. S., Richman R., Wu Z., Piwnica-Worms H., Elledge S. J. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997 Sep 5;277(5331):1497–1501. doi: 10.1126/science.277.5331.1497. [DOI] [PubMed] [Google Scholar]
  47. Shen M., Stukenberg P. T., Kirschner M. W., Lu K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 1998 Mar 1;12(5):706–720. doi: 10.1101/gad.12.5.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zeng Y., Forbes K. C., Wu Z., Moreno S., Piwnica-Worms H., Enoch T. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature. 1998 Oct 1;395(6701):507–510. doi: 10.1038/26766. [DOI] [PubMed] [Google Scholar]
  49. Zeng Y., Piwnica-Worms H. DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol Cell Biol. 1999 Nov;19(11):7410–7419. doi: 10.1128/mcb.19.11.7410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zheng X. F., Ruderman J. V. Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc25. Cell. 1993 Oct 8;75(1):155–164. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES