Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):661–668.

Prominent expression of the selenoprotein thioredoxin reductase in the medullary rays of the rat kidney and thioredoxin reductase mRNA variants differing at the 5' untranslated region.

A K Rundlöf 1, M Carlsten 1, M M Giacobini 1, E S Arnér 1
PMCID: PMC1221001  PMID: 10769168

Abstract

The mammalian selenoprotein thioredoxin reductase is a central enzyme in protection against oxidative damage or the redox control of cell function. Previously a neuroblastoma-cell-derived 2193 bp cDNA for rat thioredoxin reductase 1 (TrxR1) was characterized [Zhong, Arnér, Ljung, Aslund and Holmgren (1998) J. Biol. Chem. 273, 8581-8591]. Here, the major rat TrxR1 mRNA was determined as 3.5 kb by Northern blotting. A corresponding full-length 3360 bp liver-derived cDNA was cloned and sequenced, being extended in the 3' untranslated region (3' UTR) compared with the previous clone. Among tissues examined, lowest TrxR1 mRNA levels were found in spleen and testis and highest in liver and kidney. High expression in kidney was unexpected and in situ hybridization of adult rat kidney was performed. This revealed a highly structured expression pattern with the mRNA being prominently synthesized in the proximal tubules of the medullary rays. Analysing rat kidney cDNA, a 5' UTR domain of TrxR1 was found that was different from that in liver- or neuroblastoma-derived cDNA clones. The kidney-derived 5' UTR mRNA domain was instead highly similar to kidney-derived cDNA variants of murine apolipoprotein E. By sequence determination of the rat genomic sequence upstream of the open reading frame for TrxR1, an exon was encountered that encoded a third alternative 5' UTR domain that could also be expressed, as confirmed by its presence in a mouse skin TrxR1 cDNA clone. It can therefore be concluded that TrxR1 mRNA is expressed in at least three different variants that differ at their 5' UTRs.

Full Text

The Full Text of this article is available as a PDF (327.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnér E. S., Nordberg J., Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem Biophys Res Commun. 1996 Aug 5;225(1):268–274. doi: 10.1006/bbrc.1996.1165. [DOI] [PubMed] [Google Scholar]
  3. Björnstedt M., Hamberg M., Kumar S., Xue J., Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995 May 19;270(20):11761–11764. doi: 10.1074/jbc.270.20.11761. [DOI] [PubMed] [Google Scholar]
  4. Björnstedt M., Xue J., Huang W., Akesson B., Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem. 1994 Nov 25;269(47):29382–29384. [PubMed] [Google Scholar]
  5. Claverie J. M., Makalowski W. Alu alert. Nature. 1994 Oct 27;371(6500):752–752. doi: 10.1038/371752a0. [DOI] [PubMed] [Google Scholar]
  6. Dagerlind A., Friberg K., Bean A. J., Hökfelt T. Sensitive mRNA detection using unfixed tissue: combined radioactive and non-radioactive in situ hybridization histochemistry. Histochemistry. 1992 Aug;98(1):39–49. doi: 10.1007/BF00716936. [DOI] [PubMed] [Google Scholar]
  7. Fujiwara N., Fujii T., Fujii J., Taniguchi N. Functional expression of rat thioredoxin reductase: selenocysteine insertion sequence element is essential for the active enzyme. Biochem J. 1999 Jun 1;340(Pt 2):439–444. [PMC free article] [PubMed] [Google Scholar]
  8. Fung W. P., Howlett G. J., Schreiber G. Structure and expression of the rat apolipoprotein E gene. J Biol Chem. 1986 Oct 15;261(29):13777–13783. [PubMed] [Google Scholar]
  9. Gasdaska J. R., Gasdaska P. Y., Gallegos A., Powis G. Human thioredoxin reductase gene localization to chromosomal position 12q23-q24.1 and mRNA distribution in human tissue. Genomics. 1996 Oct 15;37(2):257–259. doi: 10.1006/geno.1996.0554. [DOI] [PubMed] [Google Scholar]
  10. Gasdaska P. Y., Gasdaska J. R., Cochran S., Powis G. Cloning and sequencing of a human thioredoxin reductase. FEBS Lett. 1995 Oct 2;373(1):5–9. doi: 10.1016/0014-5793(95)01003-w. [DOI] [PubMed] [Google Scholar]
  11. Gladyshev V. N., Jeang K. T., Stadtman T. C. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6146–6151. doi: 10.1073/pnas.93.12.6146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem. 1977 Jul 10;252(13):4600–4606. [PubMed] [Google Scholar]
  13. Holmgren A., Lyckeborg C. Enzymatic reduction of alloxan by thioredoxin and NADPH-thioredoxin reductase. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5149–5152. doi: 10.1073/pnas.77.9.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  15. Koishi R., Kawashima I., Yoshimura C., Sugawara M., Serizawa N. Cloning and characterization of a novel oxidoreductase KDRF from a human bone marrow-derived stromal cell line KM-102. J Biol Chem. 1997 Jan 24;272(4):2570–2577. doi: 10.1074/jbc.272.4.2570. [DOI] [PubMed] [Google Scholar]
  16. Kumar S., Björnstedt M., Holmgren A. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem. 1992 Jul 15;207(2):435–439. doi: 10.1111/j.1432-1033.1992.tb17068.x. [DOI] [PubMed] [Google Scholar]
  17. LAURENT T. C., MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3436–3444. [PubMed] [Google Scholar]
  18. Lee S. R., Kim J. R., Kwon K. S., Yoon H. W., Levine R. L., Ginsburg A., Rhee S. G. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem. 1999 Feb 19;274(8):4722–4734. doi: 10.1074/jbc.274.8.4722. [DOI] [PubMed] [Google Scholar]
  19. Lin C. T., Xu Y. F., Wu J. Y., Chan L. Immunoreactive apolipoprotein E is a widely distributed cellular protein. Immunohistochemical localization of apolipoprotein E in baboon tissues. J Clin Invest. 1986 Oct;78(4):947–958. doi: 10.1172/JCI112685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Low S. C., Berry M. J. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci. 1996 Jun;21(6):203–208. [PubMed] [Google Scholar]
  21. Luthman M., Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982 Dec 21;21(26):6628–6633. doi: 10.1021/bi00269a003. [DOI] [PubMed] [Google Scholar]
  22. Maser R. L., Magenheimer B. S., Calvet J. P. Mouse plasma glutathione peroxidase. cDNA sequence analysis and renal proximal tubular expression and secretion. J Biol Chem. 1994 Oct 28;269(43):27066–27073. [PubMed] [Google Scholar]
  23. Miranda-Vizuete A., Damdimopoulos A. E., Pedrajas J. R., Gustafsson J. A., Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem. 1999 Apr;261(2):405–412. doi: 10.1046/j.1432-1327.1999.00286.x. [DOI] [PubMed] [Google Scholar]
  24. Nosrat C. A., Olson L. Brain-derived neurotrophic factor mRNA is expressed in the developing taste bud-bearing tongue papillae of rat. J Comp Neurol. 1995 Oct 2;360(4):698–704. doi: 10.1002/cne.903600413. [DOI] [PubMed] [Google Scholar]
  25. Nosrat C. A., Tomac A., Hoffer B. J., Olson L. Cellular and developmental patterns of expression of Ret and glial cell line-derived neurotrophic factor receptor alpha mRNAs. Exp Brain Res. 1997 Jul;115(3):410–422. doi: 10.1007/pl00005711. [DOI] [PubMed] [Google Scholar]
  26. Nosrat C. A., Tomac A., Lindqvist E., Lindskog S., Humpel C., Strömberg I., Ebendal T., Hoffer B. J., Olson L. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res. 1996 Nov;286(2):191–207. doi: 10.1007/s004410050688. [DOI] [PubMed] [Google Scholar]
  27. Oblong J. E., Gasdaska P. Y., Sherrill K., Powis G. Purification of human thioredoxin reductase: properties and characterization by absorption and circular dichroism spectroscopy. Biochemistry. 1993 Jul 20;32(28):7271–7277. doi: 10.1021/bi00079a025. [DOI] [PubMed] [Google Scholar]
  28. Okamoto T., Sakurada S., Yang J. P., Merin J. P. Regulation of NF-kappa B and disease control: identification of a novel serine kinase and thioredoxin as effectors for signal transduction pathway for NF-kappa B activation. Curr Top Cell Regul. 1997;35:149–161. doi: 10.1016/s0070-2137(97)80006-4. [DOI] [PubMed] [Google Scholar]
  29. Rozell B., Hansson H. A., Luthman M., Holmgren A. Immunohistochemical localization of thioredoxin and thioredoxin reductase in adult rats. Eur J Cell Biol. 1985 Jul;38(1):79–86. [PubMed] [Google Scholar]
  30. Sahaf B., Söderberg A., Spyrou G., Barral A. M., Pekkari K., Holmgren A., Rosén A. Thioredoxin expression and localization in human cell lines: detection of full-length and truncated species. Exp Cell Res. 1997 Oct 10;236(1):181–192. doi: 10.1006/excr.1997.3699. [DOI] [PubMed] [Google Scholar]
  31. Silberstein D. S., McDonough S., Minkoff M. S., Balcewicz-Sablinska M. K. Human eosinophil cytotoxicity-enhancing factor. Eosinophil-stimulating and dithiol reductase activities of biosynthetic (recombinant) species with COOH-terminal deletions. J Biol Chem. 1993 Apr 25;268(12):9138–9142. [PubMed] [Google Scholar]
  32. Simonet W. S., Bucay N., Lauer S. J., Taylor J. M. A far-downstream hepatocyte-specific control region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. J Biol Chem. 1993 Apr 15;268(11):8221–8229. [PubMed] [Google Scholar]
  33. Simonet W. S., Bucay N., Lauer S. J., Wirak D. O., Stevens M. E., Weisgraber K. H., Pitas R. E., Taylor J. M. In the absence of a downstream element, the apolipoprotein E gene is expressed at high levels in kidneys of transgenic mice. J Biol Chem. 1990 Jul 5;265(19):10809–10812. [PubMed] [Google Scholar]
  34. Smith R. F., Wiese B. A., Wojzynski M. K., Davison D. B., Worley K. C. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 1996 May;6(5):454–462. doi: 10.1101/gr.6.5.454. [DOI] [PubMed] [Google Scholar]
  35. Sun Q. A., Wu Y., Zappacosta F., Jeang K. T., Lee B. J., Hatfield D. L., Gladyshev V. N. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem. 1999 Aug 27;274(35):24522–24530. doi: 10.1074/jbc.274.35.24522. [DOI] [PubMed] [Google Scholar]
  36. Tagaya Y., Maeda Y., Mitsui A., Kondo N., Matsui H., Hamuro J., Brown N., Arai K., Yokota T., Wakasugi H. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 1989 Mar;8(3):757–764. doi: 10.1002/j.1460-2075.1989.tb03436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tamura T., Stadtman T. C. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1006–1011. doi: 10.1073/pnas.93.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Terashima H., Gotoh S., Yagi K., Mizoguchi T. cDNA sequence of bovine thioredoxin. DNA Seq. 1999;10(3):203–205. doi: 10.3109/10425179909033949. [DOI] [PubMed] [Google Scholar]
  39. Thelander L. Thioredoxin reductase. Characterization of a homogenous preparation from Escherichia coli B. J Biol Chem. 1967 Mar 10;242(5):852–859. [PubMed] [Google Scholar]
  40. Yodoi J., Tursz T. ADF, a growth-promoting factor derived from adult T cell leukemia and homologous to thioredoxin: involvement in lymphocyte immortalization by HTLV-I and EBV. Adv Cancer Res. 1991;57:381–411. doi: 10.1016/s0065-230x(08)61004-0. [DOI] [PubMed] [Google Scholar]
  41. Zhong L., Arnér E. S., Ljung J., Aslund F., Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem. 1998 Apr 10;273(15):8581–8591. doi: 10.1074/jbc.273.15.8581. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES