Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):693–701. doi: 10.1042/0264-6021:3470693

Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways.

M J Van Der Werf 1
PMCID: PMC1221005  PMID: 10769172

Abstract

A Baeyer-Villiger mono-oxygenase (BVMO), catalysing the NADPH- and oxygen-dependent oxidation of the monocyclic monoterpene ketones 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone, was purified to homogeneity from Rhodococcus erythropolis DCL14. Monocyclic monoterpene ketone mono-oxygenase (MMKMO) is a monomeric enzyme of molecular mass 60 kDa. It contains 1 mol of FAD/monomer as the prosthetic group. The N-terminal amino acid sequence showed homology with many other NADPH-dependent and FAD-containing (Type 1) BVMOs. Maximal enzyme activity was measured at pH 9 and 35 degrees C. MMKMO has a broad substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones. The natural substrates 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone were converted stoichiometrically into 3-isopropenyl-6-oxoheptanoate (the spontaneous rearrangement product of the lactone formed by MMKMO), 4-isopropenyl-7-methyl-2-oxo-oxepanone and 7-isopropyl-4-methyl-2-oxo-oxepanone respectively. The MMKMO-catalysed conversion of iso-dihydrocarvone showed an opposite regioselectivity to that of dihydrocarvone; in this case, 6-isopropenyl-3-methyl-2-oxo-oxepanone was formed as the product. MMKMO converted all enantiomers of the natural substrates with almost equal efficiency. MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol.

Full Text

The Full Text of this article is available as a PDF (161.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellamacina C. R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 1996 Sep;10(11):1257–1269. doi: 10.1096/fasebj.10.11.8836039. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. C., Peoples O. P., Walsh C. T. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination. J Bacteriol. 1988 Feb;170(2):781–789. doi: 10.1128/jb.170.2.781-789.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donoghue N. A., Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem. 1976 Mar 16;63(1):175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. [DOI] [PubMed] [Google Scholar]
  5. Hartmans S., Smits J. P., van der Werf M. J., Volkering F., de Bont J. A. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Appl Environ Microbiol. 1989 Nov;55(11):2850–2855. doi: 10.1128/aem.55.11.2850-2855.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones K. H., Smith R. T., Trudgill P. W. Diketocamphane enantiomer-specific 'Baeyer-Villiger' monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J Gen Microbiol. 1993 Apr;139(4):797–805. doi: 10.1099/00221287-139-4-797. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Miyamoto M., Matsumoto J., Iwaya T., Itagaki E. Bacterial steroid monooxygenase catalyzing the Baeyer-Villiger oxidation of C21-ketosteroids from Rhodococcus rhodochrous: the isolation and characterization. Biochim Biophys Acta. 1995 Sep 6;1251(2):115–124. doi: 10.1016/0167-4838(95)00090-h. [DOI] [PubMed] [Google Scholar]
  9. Morii S., Sawamoto S., Yamauchi Y., Miyamoto M., Iwami M., Itagaki E. Steroid monooxygenase of Rhodococcus rhodochrous: sequencing of the genomic DNA, and hyperexpression, purification, and characterization of the recombinant enzyme. J Biochem. 1999 Sep;126(3):624–631. doi: 10.1093/oxfordjournals.jbchem.a022494. [DOI] [PubMed] [Google Scholar]
  10. Ougham H. J., Taylor D. G., Trudgill P. W. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida. J Bacteriol. 1983 Jan;153(1):140–152. doi: 10.1128/jb.153.1.140-152.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Taylor D. G., Trudgill P. W. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J Bacteriol. 1986 Feb;165(2):489–497. doi: 10.1128/jb.165.2.489-497.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Willetts A. Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 1997 Feb;15(2):55–62. doi: 10.1016/S0167-7799(97)84204-7. [DOI] [PubMed] [Google Scholar]
  13. van der Werf M. J., Overkamp K. M., de Bont J. A. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J Bacteriol. 1998 Oct;180(19):5052–5057. doi: 10.1128/jb.180.19.5052-5057.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. van der Werf M. J., Swarts H. J., de Bont J. A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol. 1999 May;65(5):2092–2102. doi: 10.1128/aem.65.5.2092-2102.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van der Werf M. J., van den Tweel W. J., Hartmans S. Purification and Characterization of Maleate Hydratase from Pseudomonas pseudoalcaligenes. Appl Environ Microbiol. 1993 Sep;59(9):2823–2829. doi: 10.1128/aem.59.9.2823-2829.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van der Werf M. J., van der Ven C., Barbirato F., Eppink M. H., de Bont J. A., van Berkel W. J. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. A novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem. 1999 Sep 10;274(37):26296–26304. doi: 10.1074/jbc.274.37.26296. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES