Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):733–740.

Persistent activation of Gsalpha through limited proteolysis by calpain.

K Sato-Kusubata 1, Y Yajima 1, S Kawashima 1
PMCID: PMC1221010  PMID: 10769177

Abstract

Treatment of rat pituitary GH(4)C(1) cell membranes with calpain, a calcium-activated cysteine protease, increased adenylate cyclase activity, and this activity was inhibited by a calpain inhibitor, leupeptin. Calpain treatment potentiated the activity of guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but did not attenuate MnCl(2) action on adenylate cyclase, suggesting that calpain acted at the G-protein level, rather than directly on adenylate cyclase. This calpain stimulation of adenylate cyclase was inhibited by an antibody raised against the C-terminal portion of G(s)alpha, but not by anti-G(i)2alpha or anti-Gbeta antibodies. Furthermore, it was shown that G(s)alpha is more susceptible to calpain-mediated proteolysis than G(i)2alpha or Gbeta. Therefore the stimulatory effect of calpain on adenylate cyclase is due to the cleavage of G(s)alpha in GH(4)C(1) cell membranes. Proteolysis of G(s)alpha by micro-calpain involved sequential cleavages at two sites, resulting in the generation of a 39 kDa fragment first, and then a 20 kDa fragment, from the C-terminus. Treatment of GH(4)C(1) cell membranes with cholera toxin increased the rate of cleavage. Cholera toxin treatment of intact GH(4)C(1) cells induced the translocation of calpain from the cytosol to the membranes, a hallmark of calpain activation. In addition, treatment of intact GH(4)C(1) cells with a calpain-specific inhibitor, benzyloxycarbonyl-Leu-leucinal, blocked the increased cAMP production and the down-regulation of G(s)alpha, which were produced by cholera toxin or pituitary adenylate cyclase-activating polypeptide. These results suggest that calpain sustains adenylate cyclase in an active form through the cleavage of G(s)alpha to an active G(s)alpha fragment. This is a novel calpain-dependent activation mechanism of G(s)alpha and, thus, of adenylate cyclase in rat pituitary cells.

Full Text

The Full Text of this article is available as a PDF (283.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonelli M., Birnbaumer L., Allende J. E., Olate J. Human-Xenopus chimeras of Gs alpha reveal a new region important for its activation of adenylyl cyclase. FEBS Lett. 1994 Mar 7;340(3):249–254. doi: 10.1016/0014-5793(94)80148-7. [DOI] [PubMed] [Google Scholar]
  2. Banno Y., Asano T., Nozawa Y. Proteolytic modification of membrane-associated phospholipase C-beta by mu-calpain enhances its activation by G-protein beta gamma subunits in human platelets. FEBS Lett. 1994 Mar 7;340(3):185–188. doi: 10.1016/0014-5793(94)80134-7. [DOI] [PubMed] [Google Scholar]
  3. Banno Y., Nakashima S., Hachiya T., Nozawa Y. Endogenous cleavage of phospholipase C-beta 3 by agonist-induced activation of calpain in human platelets. J Biol Chem. 1995 Mar 3;270(9):4318–4324. doi: 10.1074/jbc.270.9.4318. [DOI] [PubMed] [Google Scholar]
  4. Berlot C. H., Bourne H. R. Identification of effector-activating residues of Gs alpha. Cell. 1992 Mar 6;68(5):911–922. doi: 10.1016/0092-8674(92)90034-a. [DOI] [PubMed] [Google Scholar]
  5. Chang F. H., Bourne H. R. Cholera toxin induces cAMP-independent degradation of Gs. J Biol Chem. 1989 Apr 5;264(10):5352–5357. [PubMed] [Google Scholar]
  6. Chatterjee T. K., Eapen A. K., Fisher R. A. A truncated form of RGS3 negatively regulates G protein-coupled receptor stimulation of adenylyl cyclase and phosphoinositide phospholipase C. J Biol Chem. 1997 Jun 13;272(24):15481–15487. doi: 10.1074/jbc.272.24.15481. [DOI] [PubMed] [Google Scholar]
  7. Choi Y. H., Lee S. J., Nguyen P., Jang J. S., Lee J., Wu M. L., Takano E., Maki M., Henkart P. A., Trepel J. B. Regulation of cyclin D1 by calpain protease. J Biol Chem. 1997 Nov 7;272(45):28479–28484. doi: 10.1074/jbc.272.45.28479. [DOI] [PubMed] [Google Scholar]
  8. Clapham D. E., Neer E. J. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997;37:167–203. doi: 10.1146/annurev.pharmtox.37.1.167. [DOI] [PubMed] [Google Scholar]
  9. Cooray P., Yuan Y., Schoenwaelder S. M., Mitchell C. A., Salem H. H., Jackson S. P. Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem J. 1996 Aug 15;318(Pt 1):41–47. doi: 10.1042/bj3180041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eto A., Akita Y., Saido T. C., Suzuki K., Kawashima S. The role of the calpain-calpastatin system in thyrotropin-releasing hormone-induced selective down-regulation of a protein kinase C isozyme, nPKC epsilon, in rat pituitary GH4C1 cells. J Biol Chem. 1995 Oct 20;270(42):25115–25120. doi: 10.1074/jbc.270.42.25115. [DOI] [PubMed] [Google Scholar]
  11. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  12. Itoh H., Gilman A. G. Expression and analysis of Gs alpha mutants with decreased ability to activate adenylylcyclase. J Biol Chem. 1991 Aug 25;266(24):16226–16231. [PubMed] [Google Scholar]
  13. Kawashima S., Ohsumi M., Hayashi M., Inomata M., Nakamura M., Imahori K. Lack of tissue-specificity of calcium-activated neutral proteases from skeletal muscle and lung of rabbit. J Biochem. 1984 Apr;95(4):1231–1234. doi: 10.1093/oxfordjournals.jbchem.a134716. [DOI] [PubMed] [Google Scholar]
  14. Kishimoto A., Mikawa K., Hashimoto K., Yasuda I., Tanaka S., Tominaga M., Kuroda T., Nishizuka Y. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem. 1989 Mar 5;264(7):4088–4092. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Levis M. J., Bourne H. R. Activation of the alpha subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol. 1992 Dec;119(5):1297–1307. doi: 10.1083/jcb.119.5.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Markby D. W., Onrust R., Bourne H. R. Separate GTP binding and GTPase activating domains of a G alpha subunit. Science. 1993 Dec 17;262(5141):1895–1901. doi: 10.1126/science.8266082. [DOI] [PubMed] [Google Scholar]
  18. McKenzie F. R., Milligan G. Prostaglandin E1-mediated, cyclic AMP-independent, down-regulation of Gs alpha in neuroblastoma x glioma hybrid cells. J Biol Chem. 1990 Oct 5;265(28):17084–17093. [PubMed] [Google Scholar]
  19. Milligan G. Agonist regulation of cellular G protein levels and distribution: mechanisms and functional implications. Trends Pharmacol Sci. 1993 Nov;14(11):413–418. doi: 10.1016/0165-6147(93)90064-Q. [DOI] [PubMed] [Google Scholar]
  20. Mitchell F. M., Buckley N. J., Milligan G. Enhanced degradation of the phosphoinositidase C-linked guanine-nucleotide-binding protein Gq alpha/G11 alpha following activation of the human M1 muscarinic acetylcholine receptor expressed in CHO cells. Biochem J. 1993 Jul 15;293(Pt 2):495–499. doi: 10.1042/bj2930495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oda A., Druker B. J., Ariyoshi H., Smith M., Salzman E. W. pp60src is an endogenous substrate for calpain in human blood platelets. J Biol Chem. 1993 Jun 15;268(17):12603–12608. [PubMed] [Google Scholar]
  22. Osawa S., Heasley L. E., Dhanasekaran N., Gupta S. K., Woon C. W., Berlot C., Johnson G. L. Mutation of the Gs protein alpha subunit NH2 terminus relieves an attenuator function, resulting in constitutive adenylyl cyclase stimulation. Mol Cell Biol. 1990 Jun;10(6):2931–2940. doi: 10.1128/mcb.10.6.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paulssen R. H., Johansen P. W., Gordeladze J. O., Nymoen O., Paulssen E. J., Gautvik K. M. Cell-specific expression and function of adenylyl cyclases in rat pituitary tumour cell lines. Eur J Biochem. 1994 May 15;222(1):97–103. doi: 10.1111/j.1432-1033.1994.tb18846.x. [DOI] [PubMed] [Google Scholar]
  24. Rock M. T., Brooks W. H., Roszman T. L. Calcium-dependent signaling pathways in T cells. Potential role of calpain, protein tyrosine phosphatase 1b, and p130Cas in integrin-mediated signaling events. J Biol Chem. 1997 Dec 26;272(52):33377–33383. doi: 10.1074/jbc.272.52.33377. [DOI] [PubMed] [Google Scholar]
  25. Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
  26. Spiegel A. M., Gierschik P., Levine M. A., Downs R. W., Jr Clinical implications of guanine nucleotide-binding proteins as receptor-effector couplers. N Engl J Med. 1985 Jan 3;312(1):26–33. doi: 10.1056/NEJM198501033120106. [DOI] [PubMed] [Google Scholar]
  27. Sprang S. R. G protein mechanisms: insights from structural analysis. Annu Rev Biochem. 1997;66:639–678. doi: 10.1146/annurev.biochem.66.1.639. [DOI] [PubMed] [Google Scholar]
  28. Tashjian A. H., Jr Clonal strains of hormone-producing pituitary cells. Methods Enzymol. 1979;58:527–535. doi: 10.1016/s0076-6879(79)58167-1. [DOI] [PubMed] [Google Scholar]
  29. Tremblay J., Hamet P. Calcium-dependent proteolytic stimulation of adenylate cyclase in platelets from spontaneously hypertensive rats. Metabolism. 1984 Aug;33(8):689–695. doi: 10.1016/0026-0495(84)90206-3. [DOI] [PubMed] [Google Scholar]
  30. Tsubuki S., Saito Y., Tomioka M., Ito H., Kawashima S. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996 Mar;119(3):572–576. doi: 10.1093/oxfordjournals.jbchem.a021280. [DOI] [PubMed] [Google Scholar]
  31. Wedegaertner P. B., Bourne H. R., von Zastrow M. Activation-induced subcellular redistribution of Gs alpha. Mol Biol Cell. 1996 Aug;7(8):1225–1233. doi: 10.1091/mbc.7.8.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yajima Y., Akita Y., Saito T., Kawashima S. VIP induces the translocation and degradation of the alpha subunit of Gs protein in rat pituitary GH4C1 cells. J Biochem. 1998 Jun;123(6):1024–1030. doi: 10.1093/oxfordjournals.jbchem.a022038. [DOI] [PubMed] [Google Scholar]
  33. Yajima Y., Akita Y., Saito T. Pertussis toxin blocks the inhibitory effects of somatostatin on cAMP-dependent vasoactive intestinal peptide and cAMP-independent thyrotropin releasing hormone-stimulated prolactin secretion of GH3 cells. J Biol Chem. 1986 Feb 25;261(6):2684–2689. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES