Abstract
Site-directed mutagenesis has been used to remove 15 of the 18 potential N-linked glycosylation sites, in 16 combinations, from the human exon 11-minus receptor isoform. The three glycosylation sites not mutated were asparagine residues 25, 397 and 894, which are known to be important in receptor biosynthesis or function. The effects of these mutations on proreceptor processing into alpha and beta subunits, cell-surface expression, insulin binding and receptor autophosphorylation were assessed in Chinese hamster ovary cells. The double mutants 16+78, 16+111, 16+215, 16+255, 337+418, the triple mutants 295+337+418, 295+418+514, 337+418+514 and 730+743+881 and the quadruple mutants 606+730+743+881 and 671+730+743+881 seemed normal by all criteria examined. The triple mutant 16+215+255 showed only low levels of correctly processed receptor on the cell surface, this processed receptor being autophosphorylated in response to insulin. The quadruple mutant 624+730+743+881 showed normal processing and ligand binding but exhibited a constitutively active tyrosine kinase as judged by autophosphorylation. Three higher-order mutants were constructed, two of which, 16+337+418+730+743+881 (Delta6) and 16+295+337+418+730+743+881 (Delta7a), seemed normal. The third construct, 16+337+418+514+730+743+881 (Delta7b), was expressed at high levels on the cell surface, essentially as uncleaved proreceptor with only the small proportion of Delta7b that was correctly processed showing insulin-stimulated autophosphorylation. The mutations of Delta6 and Delta7a were incorporated into soluble ectodomains, which had affinities for insulin that were 4-fold that of wild-type ectodomain. The Delta6 ectodomain expressed in Lec8 cells was produced in quantity in a bioreactor for subsequent structural analysis.
Full Text
The Full Text of this article is available as a PDF (181.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bajaj M., Waterfield M. D., Schlessinger J., Taylor W. R., Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta. 1987 Nov 26;916(2):220–226. doi: 10.1016/0167-4838(87)90112-9. [DOI] [PubMed] [Google Scholar]
- Bass J., Chiu G., Argon Y., Steiner D. F. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol. 1998 May 4;141(3):637–646. doi: 10.1083/jcb.141.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastian W., Zhu J., Way B., Lockwood D., Livingston J. Glycosylation of Asn397 or Asn418 is required for normal insulin receptor biosynthesis and processing. Diabetes. 1993 Jul;42(7):966–974. doi: 10.2337/diab.42.7.966. [DOI] [PubMed] [Google Scholar]
- Caro L. H., Ohali A., Gorden P., Collier E. Mutational analysis of the NH2-terminal glycosylation sites of the insulin receptor alpha-subunit. Diabetes. 1994 Feb;43(2):240–246. doi: 10.2337/diab.43.2.240. [DOI] [PubMed] [Google Scholar]
- Carter P. Improved oligonucleotide-directed mutagenesis using M13 vectors. Methods Enzymol. 1987;154:382–403. doi: 10.1016/0076-6879(87)54086-1. [DOI] [PubMed] [Google Scholar]
- Collier E., Carpentier J. L., Beitz L., Carol H., Taylor S. I., Gorden P. Specific glycosylation site mutations of the insulin receptor alpha subunit impair intracellular transport. Biochemistry. 1993 Aug 3;32(30):7818–7823. doi: 10.1021/bi00081a029. [DOI] [PubMed] [Google Scholar]
- Collier E., Gorden P. O-linked oligosaccharides on insulin receptor. Diabetes. 1991 Feb;40(2):197–203. doi: 10.2337/diab.40.2.197. [DOI] [PubMed] [Google Scholar]
- Cosgrove L., Lovrecz G. O., Verkuylen A., Cavaleri L., Black L. A., Bentley J. D., Howlett G. J., Gray P. P., Ward C. W., McKern N. M. Purification and properties of insulin receptor ectodomain from large-scale mammalian cell culture. Protein Expr Purif. 1995 Dec;6(6):789–798. doi: 10.1006/prep.1995.0010. [DOI] [PubMed] [Google Scholar]
- Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
- Ellis L., Clauser E., Morgan D. O., Edery M., Roth R. A., Rutter W. J. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986 Jun 6;45(5):721–732. doi: 10.1016/0092-8674(86)90786-5. [DOI] [PubMed] [Google Scholar]
- Fabry M., Schaefer E., Ellis L., Kojro E., Fahrenholz F., Brandenburg D. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. J Biol Chem. 1992 May 5;267(13):8950–8956. [PubMed] [Google Scholar]
- Garrett T. P., McKern N. M., Lou M., Frenkel M. J., Bentley J. D., Lovrecz G. O., Elleman T. C., Cosgrove L. J., Ward C. W. Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature. 1998 Jul 23;394(6691):395–399. doi: 10.1038/28668. [DOI] [PubMed] [Google Scholar]
- Hebert D. N., Zhang J. X., Chen W., Foellmer B., Helenius A. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol. 1997 Nov 3;139(3):613–623. doi: 10.1083/jcb.139.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedo J. A., Gorden P. Biosynthesis of the insulin receptor. Horm Metab Res. 1985 Oct;17(10):487–490. doi: 10.1055/s-2007-1013586. [DOI] [PubMed] [Google Scholar]
- Hedo J. A., Kahn C. R., Hayashi M., Yamada K. M., Kasuga M. Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunits. J Biol Chem. 1983 Aug 25;258(16):10020–10026. [PubMed] [Google Scholar]
- Hedo J. A., Kasuga M., Van Obberghen E., Roth J., Kahn C. R. Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labeling: evidence for heterogeneity. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4791–4795. doi: 10.1073/pnas.78.8.4791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994 Mar;5(3):253–265. doi: 10.1091/mbc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendrickson W. A. Production of crystallizable fragments of membrane proteins. J Bioenerg Biomembr. 1996 Feb;28(1):35–40. [PubMed] [Google Scholar]
- Herzberg V. L., Grigorescu F., Edge A. S., Spiro R. G., Kahn C. R. Characterization of insulin receptor carbohydrate by comparison of chemical and enzymatic deglycosylation. Biochem Biophys Res Commun. 1985 Jun 28;129(3):789–796. doi: 10.1016/0006-291x(85)91961-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lammers R., Gray A., Schlessinger J., Ullrich A. Differential signalling potential of insulin- and IGF-1-receptor cytoplasmic domains. EMBO J. 1989 May;8(5):1369–1375. doi: 10.1002/j.1460-2075.1989.tb03517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leconte I., Auzan C., Debant A., Rossi B., Clauser E. N-linked oligosaccharide chains of the insulin receptor beta subunit are essential for transmembrane signaling. J Biol Chem. 1992 Aug 25;267(24):17415–17423. [PubMed] [Google Scholar]
- Leconte I., Carpentier J. L., Clauser E. The functions of the human insulin receptor are affected in different ways by mutation of each of the four N-glycosylation sites in the beta subunit. J Biol Chem. 1994 Jul 8;269(27):18062–18071. [PubMed] [Google Scholar]
- Marino-Buslje C., Mizuguchi K., Siddle K., Blundell T. L. A third fibronectin type III domain in the extracellular region of the insulin receptor family. FEBS Lett. 1998 Dec 18;441(2):331–336. doi: 10.1016/s0014-5793(98)01509-9. [DOI] [PubMed] [Google Scholar]
- Mulhern T. D., Booker G. W., Cosgrove L. A third fibronectin-type-III domain in the insulin-family receptors. Trends Biochem Sci. 1998 Dec;23(12):465–466. doi: 10.1016/s0968-0004(98)01288-2. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
- O'Bryan J. P., Frye R. A., Cogswell P. C., Neubauer A., Kitch B., Prokop C., Espinosa R., 3rd, Le Beau M. M., Earp H. S., Liu E. T. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991 Oct;11(10):5016–5031. doi: 10.1128/mcb.11.10.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson T. S., Bamberger M. J., Lane M. D. Post-translational changes in tertiary and quaternary structure of the insulin proreceptor. Correlation with acquisition of function. J Biol Chem. 1988 May 25;263(15):7342–7351. [PubMed] [Google Scholar]
- Ronnett G. V., Knutson V. P., Kohanski R. A., Simpson T. L., Lane M. D. Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J Biol Chem. 1984 Apr 10;259(7):4566–4575. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaefer E. M., Erickson H. P., Federwisch M., Wollmer A., Ellis L. Structural organization of the human insulin receptor ectodomain. J Biol Chem. 1992 Nov 15;267(32):23393–23402. [PubMed] [Google Scholar]
- Schumacher R., Soos M. A., Schlessinger J., Brandenburg D., Siddle K., Ullrich A. Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J Biol Chem. 1993 Jan 15;268(2):1087–1094. [PubMed] [Google Scholar]
- Seino S., Seino M., Nishi S., Bell G. I. Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci U S A. 1989 Jan;86(1):114–118. doi: 10.1073/pnas.86.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shier P., Watt V. M. Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem. 1989 Sep 5;264(25):14605–14608. [PubMed] [Google Scholar]
- Soos M. A., Siddle K., Baron M. D., Heward J. M., Luzio J. P., Bellatin J., Lennox E. S. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem J. 1986 Apr 1;235(1):199–208. doi: 10.1042/bj2350199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparrow L. G., McKern N. M., Gorman J. J., Strike P. M., Robinson C. P., Bentley J. D., Ward C. W. The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. J Biol Chem. 1997 Nov 21;272(47):29460–29467. doi: 10.1074/jbc.272.47.29460. [DOI] [PubMed] [Google Scholar]
- Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol. 1989 Feb;9(2):377–383. doi: 10.1128/mcb.9.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trombetta E. S., Helenius A. Lectins as chaperones in glycoprotein folding. Curr Opin Struct Biol. 1998 Oct;8(5):587–592. doi: 10.1016/s0959-440x(98)80148-6. [DOI] [PubMed] [Google Scholar]
- Tulloch P. A., Lawrence L. J., McKern N. M., Robinson C. P., Bentley J. D., Cosgrove L., Ivancic N., Lovrecz G. O., Siddle K., Ward C. W. Single-molecule imaging of human insulin receptor ectodomain and its Fab complexes. J Struct Biol. 1999 Mar;125(1):11–18. doi: 10.1006/jsbi.1998.4066. [DOI] [PubMed] [Google Scholar]
- Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
- Ullrich A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986 Oct;5(10):2503–2512. doi: 10.1002/j.1460-2075.1986.tb04528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward C. W., Hoyne P. A., Flegg R. H. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins. 1995 Jun;22(2):141–153. doi: 10.1002/prot.340220207. [DOI] [PubMed] [Google Scholar]
- Ward C. W. Members of the insulin receptor family contain three fibronectin type III domains. Growth Factors. 1999;16(4):315–322. doi: 10.3109/08977199909069149. [DOI] [PubMed] [Google Scholar]
- Whittaker J., Garcia P., Yu G. Q., Mynarcik D. C. Transmembrane domain interactions are necessary for negative cooperativity of the insulin receptor. Mol Endocrinol. 1994 Nov;8(11):1521–1527. doi: 10.1210/mend.8.11.7877620. [DOI] [PubMed] [Google Scholar]
- Wiese R. J., Herrera R., Lockwood D. H. Glycosylation sites encoded by exon 2 of the human insulin receptor gene are not required for the oligomerization, ligand binding, or kinase activity of the insulin receptor. Receptor. 1995 Spring;5(1):71–80. [PubMed] [Google Scholar]
- Wyss D. F., Wagner G. The structural role of sugars in glycoproteins. Curr Opin Biotechnol. 1996 Aug;7(4):409–416. doi: 10.1016/s0958-1669(96)80116-9. [DOI] [PubMed] [Google Scholar]