Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):781–785. doi: 10.1042/0264-6021:3470781

Protein kinase C activation by acidic proteins including 14-3-3.

P C Van Der Hoeven 1, J C Van Der Wal 1, P Ruurs 1, W J Van Blitterswijk 1
PMCID: PMC1221016  PMID: 10769183

Abstract

14-3-3 proteins may function as adapter or scaffold proteins in signal transduction pathways. We reported previously that several 14-3-3 isotypes bind to protein kinase C (PKC)-zeta and facilitate coupling of PKC-zeta to Raf-1 [van der Hoeven, van der Wal, Ruurs, van Dijk and van Blitterswijk (2000) Biochem. J. 345, 297-306], an event that boosts the mitogen-activated protein kinase (ERK) pathway in Rat-1 fibroblasts. The present work investigated whether bound 14-3-3 would affect PKC-zeta activity. Using recombinant 14-3-3 proteins and purified PKC-zeta in a convenient, newly developed in vitro kinase assay, we found that 14-3-3 proteins stimulated PKC-zeta activity in a dose-dependent fashion up to approx. 2.5-fold. Activation of PKC-zeta by 14-3-3 isotypes was unrelated to their mutual affinity, estimated by co-immunoprecipitation from COS cell lysates. Accordingly, PKC-zeta with a defective (point-mutated) 14-3-3-binding site, showed the same 14-3-3-stimulated activity as wild-type PKC-zeta. As 14-13-3 proteins are acidic, we tested several other acidic proteins, which turned out to stimulate PKC-zeta activity in a similar fashion, whereas neutral or basic proteins did not. These effects were not restricted to the atypical PKC-zeta, but were also found for classical PKC. Together, the results suggest that the stimulation of PKC activity by 14-3-3 proteins is non-specific and solely due to the acidic nature of these proteins, quite similar to that known for acidic lipids.

Full Text

The Full Text of this article is available as a PDF (143.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acs P., Szallasi Z., Kazanietz M. G., Blumberg P. M. Differential activation of PKC isozymes by 14-3-3 zeta protein. Biochem Biophys Res Commun. 1995 Nov 2;216(1):103–109. doi: 10.1006/bbrc.1995.2597. [DOI] [PubMed] [Google Scholar]
  2. Aitken A. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol. 1996 Sep;6(9):341–347. doi: 10.1016/0962-8924(96)10029-5. [DOI] [PubMed] [Google Scholar]
  3. Aitken A., Howell S., Jones D., Madrazo J., Martin H., Patel Y., Robinson K. Post-translationally modified 14-3-3 isoforms and inhibition of protein kinase C. Mol Cell Biochem. 1995 Aug-Sep;149-150:41–49. doi: 10.1007/BF01076562. [DOI] [PubMed] [Google Scholar]
  4. Chen F., Wagner P. D. 14-3-3 proteins bind to histone and affect both histone phosphorylation and dephosphorylation. FEBS Lett. 1994 Jun 27;347(2-3):128–132. doi: 10.1016/0014-5793(94)00520-6. [DOI] [PubMed] [Google Scholar]
  5. Dellambra E., Patrone M., Sparatore B., Negri A., Ceciliani F., Bondanza S., Molina F., Cancedda F. D., De Luca M. Stratifin, a keratinocyte specific 14-3-3 protein, harbors a pleckstrin homology (PH) domain and enhances protein kinase C activity. J Cell Sci. 1995 Nov;108(Pt 11):3569–3579. doi: 10.1242/jcs.108.11.3569. [DOI] [PubMed] [Google Scholar]
  6. Dimitrijević S. M., Ryves W. J., Parker P. J., Evans F. J. Characterization of phorbol ester binding to protein kinase C isotypes. Mol Pharmacol. 1995 Aug;48(2):259–267. [PubMed] [Google Scholar]
  7. Hausser A., Storz P., Link G., Stoll H., Liu Y. C., Altman A., Pfizenmaier K., Johannes F. J. Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J Biol Chem. 1999 Apr 2;274(14):9258–9264. doi: 10.1074/jbc.274.14.9258. [DOI] [PubMed] [Google Scholar]
  8. Isobe T., Hiyane Y., Ichimura T., Okuyama T., Takahashi N., Nakajo S., Nakaya K. Activation of protein kinase C by the 14-3-3 proteins homologous with Exo1 protein that stimulates calcium-dependent exocytosis. FEBS Lett. 1992 Aug 17;308(2):121–124. doi: 10.1016/0014-5793(92)81257-m. [DOI] [PubMed] [Google Scholar]
  9. Jones D. H., Martin H., Madrazo J., Robinson K. A., Nielsen P., Roseboom P. H., Patel Y., Howell S. A., Aitken A. Expression and structural analysis of 14-3-3 proteins. J Mol Biol. 1995 Jan 27;245(4):375–384. doi: 10.1006/jmbi.1994.0031. [DOI] [PubMed] [Google Scholar]
  10. Kazanietz M. G., Areces L. B., Bahador A., Mischak H., Goodnight J., Mushinski J. F., Blumberg P. M. Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol Pharmacol. 1993 Aug;44(2):298–307. [PubMed] [Google Scholar]
  11. Khan W. A., Blobe G., Halpern A., Taylor W., Wetsel W. C., Burns D., Loomis C., Hannun Y. A. Selective regulation of protein kinase C isoenzymes by oleic acid in human platelets. J Biol Chem. 1993 Mar 5;268(7):5063–5068. [PubMed] [Google Scholar]
  12. Limatola C., Schaap D., Moolenaar W. H., van Blitterswijk W. J. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J. 1994 Dec 15;304(Pt 3):1001–1008. doi: 10.1042/bj3041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matto-Yelin M., Aitken A., Ravid S. 14-3-3 inhibits the Dictyostelium myosin II heavy-chain-specific protein kinase C activity by a direct interaction: identification of the 14-3-3 binding domain. Mol Biol Cell. 1997 Oct;8(10):1889–1899. doi: 10.1091/mbc.8.10.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGlynn E., Liebetanz J., Reutener S., Wood J., Lydon N. B., Hofstetter H., Vanek M., Meyer T., Fabbro D. Expression and partial characterization of rat protein kinase C-delta and protein kinase C-zeta in insect cells using recombinant baculovirus. J Cell Biochem. 1992 Jul;49(3):239–250. doi: 10.1002/jcb.240490306. [DOI] [PubMed] [Google Scholar]
  15. Meller N., Liu Y. C., Collins T. L., Bonnefoy-Bérard N., Baier G., Isakov N., Altman A. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Mol Cell Biol. 1996 Oct;16(10):5782–5791. doi: 10.1128/mcb.16.10.5782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palmer R. H., Dekker L. V., Woscholski R., Le Good J. A., Gigg R., Parker P. J. Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. A comparison with protein kinase C isotypes. J Biol Chem. 1995 Sep 22;270(38):22412–22416. doi: 10.1074/jbc.270.38.22412. [DOI] [PubMed] [Google Scholar]
  17. Robinson K., Jones D., Patel Y., Martin H., Madrazo J., Martin S., Howell S., Elmore M., Finnen M. J., Aitken A. Mechanism of inhibition of protein kinase C by 14-3-3 isoforms. 14-3-3 isoforms do not have phospholipase A2 activity. Biochem J. 1994 May 1;299(Pt 3):853–861. doi: 10.1042/bj2990853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tanji M., Horwitz R., Rosenfeld G., Waymire J. C. Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation. J Neurochem. 1994 Nov;63(5):1908–1916. doi: 10.1046/j.1471-4159.1994.63051908.x. [DOI] [PubMed] [Google Scholar]
  19. Toker A., Ellis C. A., Sellers L. A., Aitken A. Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur J Biochem. 1990 Jul 31;191(2):421–429. doi: 10.1111/j.1432-1033.1990.tb19138.x. [DOI] [PubMed] [Google Scholar]
  20. Toker A., Meyer M., Reddy K. K., Falck J. R., Aneja R., Aneja S., Parra A., Burns D. J., Ballas L. M., Cantley L. C. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem. 1994 Dec 23;269(51):32358–32367. [PubMed] [Google Scholar]
  21. Toker A., Sellers L. A., Amess B., Patel Y., Harris A., Aitken A. Multiple isoforms of a protein kinase C inhibitor (KCIP-1/14-3-3) from sheep brain. Amino acid sequence of phosphorylated forms. Eur J Biochem. 1992 Jun 1;206(2):453–461. doi: 10.1111/j.1432-1033.1992.tb16946.x. [DOI] [PubMed] [Google Scholar]
  22. Van Der Hoeven P. C., Van Der Wal J. C., Ruurs P., Van Dijk M. C., Van Blitterswijk J. 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J. 2000 Jan 15;345(Pt 2):297–306. doi: 10.1042/0264-6021:3450297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997 Dec 26;91(7):961–971. doi: 10.1016/s0092-8674(00)80487-0. [DOI] [PubMed] [Google Scholar]
  24. van Dijk M. C., Hilkmann H., van Blitterswijk W. J. Platelet-derived growth factor activation of mitogen-activated protein kinase depends on the sequential activation of phosphatidylcholine-specific phospholipase C, protein kinase C-zeta and Raf-1. Biochem J. 1997 Jul 15;325(Pt 2):303–307. doi: 10.1042/bj3250303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Dijk M., Muriana F. J., van Der Hoeven P. C., de Widt J., Schaap D., Moolenaar W. H., van Blitterswijk W. J. Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-zeta. Biochem J. 1997 May 1;323(Pt 3):693–699. doi: 10.1042/bj3230693. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES