Abstract
Several lipocalins contain conserved amino acid sequences similar to the phosphodiester bond cleavage domain of sugar non-specific magnesium-dependent nucleases of the Serratia marcescens type. His-89 and Glu-127 of the S. marcescens endonuclease are believed to have a role in the active catalytic site by the attack of a water molecule at the phosphorus atom of the bridging phosphate. Tear lipocalin contains both amino acids in analogous regions, and is active as a nuclease. Two forms of beta-lactoglobulin contain only Glu-134 (analogous to Glu-127 of the Serratia nuclease) yet retain nuclease activity equal to or greater than that of tear lipocalin. However, retinol-binding protein lacks both of these motifs and shows no detectable activity. DNA-nicking activity is decreased by 80% in the mutant of tear lipocalin that replaces Glu-128 but is unchanged by mutations of His-84. The endonuclease activity of tear lipocalin is dependent on the bivalent cations Mg(2+) or Mn(2+) but is decreased at high concentrations of NaCl. These findings indicate that some lipocalins have non-specific endonuclease activity similar in characteristics to the Mg(2+)-dependent nucleases and related to the conserved sequence LEDFXR (where 'X' denotes 'any other residue'), in which the glutamic residue seems to be important for activity.
Full Text
The Full Text of this article is available as a PDF (152.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benedik M. J., Strych U. Serratia marcescens and its extracellular nuclease. FEMS Microbiol Lett. 1998 Aug 1;165(1):1–13. doi: 10.1111/j.1574-6968.1998.tb13120.x. [DOI] [PubMed] [Google Scholar]
- Bozimowski D., Artiss J. D., Zak B. The variable reagent blank: protein determination as a model. J Clin Chem Clin Biochem. 1985 Oct;23(10):683–689. doi: 10.1515/cclm.1985.23.10.683. [DOI] [PubMed] [Google Scholar]
- Flick K. E., Jurica M. S., Monnat R. J., Jr, Stoddard B. L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature. 1998 Jul 2;394(6688):96–101. doi: 10.1038/27952. [DOI] [PubMed] [Google Scholar]
- Flower D. R. The lipocalin protein family: a role in cell regulation. FEBS Lett. 1994 Oct 31;354(1):7–11. doi: 10.1016/0014-5793(94)01078-1. [DOI] [PubMed] [Google Scholar]
- Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedhoff P., Franke I., Meiss G., Wende W., Krause K. L., Pingoud A. A similar active site for non-specific and specific endonucleases. Nat Struct Biol. 1999 Feb;6(2):112–113. doi: 10.1038/5796. [DOI] [PubMed] [Google Scholar]
- Friedhoff P., Gimadutdinow O., Pingoud A. Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res. 1994 Aug 25;22(16):3280–3287. doi: 10.1093/nar/22.16.3280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedhoff P., Gimadutdinow O., Pingoud A. Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res. 1994 Aug 25;22(16):3280–3287. doi: 10.1093/nar/22.16.3280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fullard R. J., Tucker D. L. Changes in human tear protein levels with progressively increasing stimulus. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2290–2301. [PubMed] [Google Scholar]
- Gasymov O. K., Abduragimov A. R., Yusifov T. N., Glasgow B. J. Solution structure by site directed tryptophan fluorescence in tear lipocalin. Biochem Biophys Res Commun. 1997 Oct 9;239(1):191–196. doi: 10.1006/bbrc.1997.7451. [DOI] [PubMed] [Google Scholar]
- Gasymov O. K., Abduragimov A. R., Yusifov T. N., Glasgow B. J. Structural changes in human tear lipocalins associated with lipid binding. Biochim Biophys Acta. 1998 Jul 28;1386(1):145–156. doi: 10.1016/s0167-4838(98)00092-2. [DOI] [PubMed] [Google Scholar]
- Glasgow B. J., Abduragimov A. R., Farahbakhsh Z. T., Faull K. F., Hubbell W. L. Tear lipocalins bind a broad array of lipid ligands. Curr Eye Res. 1995 May;14(5):363–372. doi: 10.3109/02713689508999934. [DOI] [PubMed] [Google Scholar]
- Glasgow B. J., Abduragimov A. R., Yusifov T. N., Gasymov O. K., Horwitz J., Hubbell W. L., Faull K. F. A conserved disulfide motif in human tear lipocalins influences ligand binding. Biochemistry. 1998 Feb 24;37(8):2215–2225. doi: 10.1021/bi9720888. [DOI] [PubMed] [Google Scholar]
- Glasgow B. J., Gasymov O. K., Abduragimov A. R., Yusifov T. N., Altenbach C., Hubbell W. L. Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling. Biochemistry. 1999 Oct 12;38(41):13707–13716. doi: 10.1021/bi9913449. [DOI] [PubMed] [Google Scholar]
- Glasgow B. J., Heinzmann C., Kojis T., Sparkes R. S., Mohandas T., Bateman J. B. Assignment of tear lipocalin gene to human chromosome 9q34-9qter. Curr Eye Res. 1993 Nov;12(11):1019–1023. doi: 10.3109/02713689309029229. [DOI] [PubMed] [Google Scholar]
- Glasgow B. J., Marshall G., Gasymov O. K., Abduragimov A. R., Yusifov T. N., Knobler C. M. Tear lipocalins: potential lipid scavengers for the corneal surface. Invest Ophthalmol Vis Sci. 1999 Dec;40(13):3100–3107. [PubMed] [Google Scholar]
- Glasgow B. J. Tissue expression of lipocalins in human lacrimal and von Ebner's glands: colocalization with lysozyme. Graefes Arch Clin Exp Ophthalmol. 1995 Aug;233(8):513–522. doi: 10.1007/BF00183433. [DOI] [PubMed] [Google Scholar]
- Holzfeind P., Merschak P., Rogatsch H., Culig Z., Feichtinger H., Klocker H., Redl B. Expression of the gene for tear lipocalin/von Ebner's gland protein in human prostate. FEBS Lett. 1996 Oct 21;395(2-3):95–98. doi: 10.1016/0014-5793(96)01008-3. [DOI] [PubMed] [Google Scholar]
- Ikeda S., Tanaka T., Hasegawa H., Ozaki K. Identification of a 55-KDA endonuclease in rat liver mitochondria with nucleolytic properties similar to endonuclease G. Biochem Mol Biol Int. 1996 Apr;38(5):1049–1057. [PubMed] [Google Scholar]
- Laktionov P. P., Rykova EYu, Krepkii D. V., Bryksin A. V., Vlassov V. V. Interaction of oligonucleotides with barrier fluid proteins. Biochemistry (Mosc) 1997 Jun;62(6):613–618. [PubMed] [Google Scholar]
- Lunin V. Y., Levdikov V. M., Shlyapnikov S. V., Blagova E. V., Lunin V. V., Wilson K. S., Mikhailov A. M. Three-dimensional structure of Serratia marcescens nuclease at 1.7 A resolution and mechanism of its action. FEBS Lett. 1997 Jul 21;412(1):217–222. doi: 10.1016/s0014-5793(97)00512-7. [DOI] [PubMed] [Google Scholar]
- Miller M. D., Cai J., Krause K. L. The active site of Serratia endonuclease contains a conserved magnesium-water cluster. J Mol Biol. 1999 May 21;288(5):975–987. doi: 10.1006/jmbi.1999.2729. [DOI] [PubMed] [Google Scholar]
- Miller M. D., Krause K. L. Identification of the Serratia endonuclease dimer: structural basis and implications for catalysis. Protein Sci. 1996 Jan;5(1):24–33. doi: 10.1002/pro.5560050104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molinari H., Ragona L., Varani L., Musco G., Consonni R., Zetta L., Monaco H. L. Partially folded structure of monomeric bovine beta-lactoglobulin. FEBS Lett. 1996 Mar 4;381(3):237–243. doi: 10.1016/0014-5793(96)00100-7. [DOI] [PubMed] [Google Scholar]
- Monaco H. L., Zanotti G., Spadon P., Bolognesi M., Sawyer L., Eliopoulos E. E. Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 A resolution. J Mol Biol. 1987 Oct 20;197(4):695–706. doi: 10.1016/0022-2836(87)90476-1. [DOI] [PubMed] [Google Scholar]
- Pan C. Q., Lazarus R. A. Hyperactivity of human DNase I variants. Dependence on the number of positively charged residues and concentration, length, and environment of DNA. J Biol Chem. 1998 May 8;273(19):11701–11708. doi: 10.1074/jbc.273.19.11701. [DOI] [PubMed] [Google Scholar]
- Papiz M. Z., Sawyer L., Eliopoulos E. E., North A. C., Findlay J. B., Sivaprasadarao R., Jones T. A., Newcomer M. E., Kraulis P. J. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. 1986 Nov 27-Dec 3Nature. 324(6095):383–385. doi: 10.1038/324383a0. [DOI] [PubMed] [Google Scholar]
- Qin B. Y., Bewley M. C., Creamer L. K., Baker H. M., Baker E. N., Jameson G. B. Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry. 1998 Oct 6;37(40):14014–14023. doi: 10.1021/bi981016t. [DOI] [PubMed] [Google Scholar]
- Redl B., Holzfeind P., Lottspeich F. cDNA cloning and sequencing reveals human tear prealbumin to be a member of the lipophilic-ligand carrier protein superfamily. J Biol Chem. 1992 Oct 5;267(28):20282–20287. [PubMed] [Google Scholar]
- Redl B., Holzfeind P., Lottspeich F. cDNA cloning and sequencing reveals human tear prealbumin to be a member of the lipophilic-ligand carrier protein superfamily. J Biol Chem. 1992 Oct 5;267(28):20282–20287. [PubMed] [Google Scholar]
- Shuster A. M., Gololobov G. V., Kvashuk O. A., Bogomolova A. E., Smirnov I. V., Gabibov A. G. DNA hydrolyzing autoantibodies. Science. 1992 May 1;256(5057):665–667. doi: 10.1126/science.1585181. [DOI] [PubMed] [Google Scholar]
- Woody R. W. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J. 1994;23(4):253–262. doi: 10.1007/BF00213575. [DOI] [PubMed] [Google Scholar]
- van't Hof W., Blankenvoorde M. F., Veerman E. C., Amerongen A. V. The salivary lipocalin von Ebner's gland protein is a cysteine proteinase inhibitor. J Biol Chem. 1997 Jan 17;272(3):1837–1841. doi: 10.1074/jbc.272.3.1837. [DOI] [PubMed] [Google Scholar]