Abstract
Protein S-thiolation, the formation of mixed disulphides of cysteine residues in proteins with low-molecular-mass thiols, occurs under conditions associated with oxidative stress and can lead to modification of protein function. In the present study, we examined the site of S-thiolation of the enzyme creatine kinase (CK), an important source of ATP in myocytes. Inactivation of this enzyme is thought to play a critical role in cardiac injury during oxidative stress, such as during reperfusion injury. Reaction of rabbit CK M isoenzyme with GSSG, used to model protein S-thiolation, was found to result in enzyme inactivation that could be reversed by GSH or dithiothreitol. Measurement of GSH that is released during the thiolation reaction indicated that the maximum extent of CK thiolation was approx. 1 mol of GSH/mol of protein, suggesting thiolation on one reactive cysteine residue. Accordingly, matrix-assisted laser-desorption ionization MS confirmed that the molecular mass of CK was increased, consistent with addition of one GSH molecule/molecule of CK. Using trypsin digestion, HPLC and MS analysis, the active-site cysteine residue (Cys(283)) was identified as the site of thiolation. Reversal of thiolation was shown to be rapid when GSH is abundant, rendering dethiolation of CK thermodynamically favoured within the cell. We conclude that S-glutathionylation of CK could be one mechanism to explain temporary reversible loss in activity of CK during ischaemic injury. The maintainance of GSH levels represents an important mechanism for regeneration of active CK from S-glutathionylated CK.
Full Text
The Full Text of this article is available as a PDF (150.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett W. C., DeGnore J. P., König S., Fales H. M., Keng Y. F., Zhang Z. Y., Yim M. B., Chock P. B. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry. 1999 May 18;38(20):6699–6705. doi: 10.1021/bi990240v. [DOI] [PubMed] [Google Scholar]
- Bittl J. A., Balschi J. A., Ingwall J. S. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Circ Res. 1987 Jun;60(6):871–878. doi: 10.1161/01.res.60.6.871. [DOI] [PubMed] [Google Scholar]
- Brandwein H. J., Lewicki J. A., Murad F. Reversible inactivation of guanylate cyclase by mixed disulfide formation. J Biol Chem. 1981 Mar 25;256(6):2958–2962. [PubMed] [Google Scholar]
- Cappel R. E., Gilbert H. F. The effects of mevinolin on the thiol/disulfide exchange between 3-hydroxy-3-methyglutaryl-coenzyme A reductase and glutathione. J Biol Chem. 1989 Jun 5;264(16):9180–9187. [PubMed] [Google Scholar]
- Chai Y. C., Ashraf S. S., Rokutan K., Johnston R. B., Jr, Thomas J. A. S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys. 1994 Apr;310(1):273–281. doi: 10.1006/abbi.1994.1167. [DOI] [PubMed] [Google Scholar]
- Collison M. W., Beidler D., Grimm L. M., Thomas J. A. A comparison of protein S-thiolation (protein mixed-disulfide formation) in heart cells treated with t-butyl hydroperoxide or diamide. Biochim Biophys Acta. 1986 Jan 23;885(1):58–67. doi: 10.1016/0167-4889(86)90038-8. [DOI] [PubMed] [Google Scholar]
- Collison M. W., Thomas J. A. S-thiolation of cytoplasmic cardiac creatine kinase in heart cells treated with diamide. Biochim Biophys Acta. 1987 Apr 22;928(2):121–129. doi: 10.1016/0167-4889(87)90112-1. [DOI] [PubMed] [Google Scholar]
- Ernest M. J., Kim K. H. Regulation of rat liver glycogen synthetase D. Role of glucose 6-phosphate and enzyme sulfhydryl groups in activity and glycogen binding. J Biol Chem. 1974 Aug 25;249(16):5011–5018. [PubMed] [Google Scholar]
- Gilbert H. F. Biological disulfides: the third messenger? Modulation of phosphofructokinase activity by thiol/disulfide exchange. J Biol Chem. 1982 Oct 25;257(20):12086–12091. [PubMed] [Google Scholar]
- Gilbert H. F. Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol. 1995;251:8–28. doi: 10.1016/0076-6879(95)51107-5. [DOI] [PubMed] [Google Scholar]
- Hochachka P. W. The metabolic implications of intracellular circulation. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12233–12239. doi: 10.1073/pnas.96.22.12233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahngen-Hodge J., Obin M. S., Gong X., Shang F., Nowell T. R., Jr, Gong J., Abasi H., Blumberg J., Taylor A. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem. 1997 Nov 7;272(45):28218–28226. doi: 10.1074/jbc.272.45.28218. [DOI] [PubMed] [Google Scholar]
- Ji Y., Akerboom T. P., Sies H., Thomas J. A. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys. 1999 Feb 1;362(1):67–78. doi: 10.1006/abbi.1998.1013. [DOI] [PubMed] [Google Scholar]
- Jung C. H., Thomas J. A. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys. 1996 Nov 1;335(1):61–72. doi: 10.1006/abbi.1996.0482. [DOI] [PubMed] [Google Scholar]
- Klatt P., Molina E. P., De Lacoba M. G., Padilla C. A., Martinez-Galesteo E., Barcena J. A., Lamas S. Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J. 1999 Sep;13(12):1481–1490. doi: 10.1096/fasebj.13.12.1481. [DOI] [PubMed] [Google Scholar]
- Klatt P., Molina E. P., Lamas S. Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation. J Biol Chem. 1999 May 28;274(22):15857–15864. doi: 10.1074/jbc.274.22.15857. [DOI] [PubMed] [Google Scholar]
- Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
- Latour I., De Ros E., Denef J. F., Buc Calderon P. Protein S-thiolation can mediate the inhibition of protein synthesis induced by tert-butyl hydroperoxide in isolated rat hepatocytes. Toxicol Appl Pharmacol. 1999 Oct 1;160(1):1–9. doi: 10.1006/taap.1999.8757. [DOI] [PubMed] [Google Scholar]
- Lee S. R., Kwon K. S., Kim S. R., Rhee S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998 Jun 19;273(25):15366–15372. doi: 10.1074/jbc.273.25.15366. [DOI] [PubMed] [Google Scholar]
- Mekhfi H., Veksler V., Mateo P., Maupoil V., Rochette L., Ventura-Clapier R. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res. 1996 Jun;78(6):1016–1027. doi: 10.1161/01.res.78.6.1016. [DOI] [PubMed] [Google Scholar]
- Mohr S., Hallak H., de Boitte A., Lapetina E. G., Brüne B. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1999 Apr 2;274(14):9427–9430. doi: 10.1074/jbc.274.14.9427. [DOI] [PubMed] [Google Scholar]
- Nakashima K., Horecker B. L., Pontremoli S. Regulatory sulfhydryl groups and activation by homocystine in liver fructose diphosphatase. Arch Biochem Biophys. 1970 Dec;141(2):579–587. doi: 10.1016/0003-9861(70)90177-3. [DOI] [PubMed] [Google Scholar]
- Neubauer S., Hamman B. L., Perry S. B., Bittl J. A., Ingwall J. S. Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res. 1988 Jul;63(1):1–15. doi: 10.1161/01.res.63.1.1. [DOI] [PubMed] [Google Scholar]
- Newton G. L., Dorian R., Fahey R. C. Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem. 1981 Jul 1;114(2):383–387. doi: 10.1016/0003-2697(81)90498-x. [DOI] [PubMed] [Google Scholar]
- Padgett C. M., Whorton A. R. Cellular responses to nitric oxide: role of protein S-thiolation/dethiolation. Arch Biochem Biophys. 1998 Oct 15;358(2):232–242. doi: 10.1006/abbi.1998.0859. [DOI] [PubMed] [Google Scholar]
- Park E. M., Thomas J. A. Reduction of protein mixed disulfides (dethiolation) by Escherichia coli thioredoxin: a study with glycogen phosphorylase b and creatine kinase. Arch Biochem Biophys. 1989 Jul;272(1):25–31. doi: 10.1016/0003-9861(89)90190-2. [DOI] [PubMed] [Google Scholar]
- Perryman M. B., Kerner S. A., Bohlmeyer T. J., Roberts R. Isolation and sequence analysis of a full-length cDNA for human M creatine kinase. Biochem Biophys Res Commun. 1986 Nov 14;140(3):981–989. doi: 10.1016/0006-291x(86)90732-1. [DOI] [PubMed] [Google Scholar]
- Pickering L., Pang H., Biemann K., Munro H., Schimmel P. Two tissue-specific isozymes of creatine kinase have closely matched amino acid sequences. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2310–2314. doi: 10.1073/pnas.82.8.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravichandran V., Seres T., Moriguchi T., Thomas J. A., Johnston R. B., Jr S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem. 1994 Oct 7;269(40):25010–25015. [PubMed] [Google Scholar]
- Silva C. M., Cidlowski J. A. Direct evidence for intra- and intermolecular disulfide bond formation in the human glucocorticoid receptor. Inhibition of DNA binding and identification of a new receptor-associated protein. J Biol Chem. 1989 Apr 25;264(12):6638–6647. [PubMed] [Google Scholar]
- Stachowiak O., Dolder M., Wallimann T., Richter C. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem. 1998 Jul 3;273(27):16694–16699. doi: 10.1074/jbc.273.27.16694. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Beidler D. A thin-gel isoelectric focusing method for quantitation of protein S-thiolation. Anal Biochem. 1986 Aug 15;157(1):32–38. doi: 10.1016/0003-2697(86)90192-2. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Poland B., Honzatko R. Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys. 1995 May 10;319(1):1–9. doi: 10.1006/abbi.1995.1261. [DOI] [PubMed] [Google Scholar]
- Ward N. E., Pierce D. S., Chung S. E., Gravitt K. R., O'Brian C. A. Irreversible inactivation of protein kinase C by glutathione. J Biol Chem. 1998 May 15;273(20):12558–12566. doi: 10.1074/jbc.273.20.12558. [DOI] [PubMed] [Google Scholar]
- Wood T. D., Chen L. H., Kelleher N. L., Little D. P., Kenyon G. L., McLafferty F. W. Direct sequence data from heterogeneous creatine kinase (43 kDa) by high-resolution tandem mass spectrometry. Biochemistry. 1995 Dec 19;34(50):16251–16254. doi: 10.1021/bi00050a004. [DOI] [PubMed] [Google Scholar]
- Yang Y., Zhou H. M. Reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified creatine kinase reactivated by dithiothreitol. Biochim Biophys Acta. 1998 Oct 14;1388(1):190–198. doi: 10.1016/s0167-4838(98)00194-0. [DOI] [PubMed] [Google Scholar]
- Zhou H. M., Tsou C. L. The presence of reactive SH groups in the enzymatically active dicyano derivative of creatine kinase. Biochim Biophys Acta. 1987 Jan 30;911(2):136–143. doi: 10.1016/0167-4838(87)90002-1. [DOI] [PubMed] [Google Scholar]