Abstract
Sensitivity to 1,4-dihydropyridines (DHPs) can be transferred from L-type (alpha1C) to non-L-type (alpha1A) Ca(2+) channel alpha1 subunits by the mutation of nine pore-associated non-conserved amino acid residues, yielding mutant alpha1A(DHP). To determine whether the hallmarks of reversible DHP binding to L-type Ca(2+) channels (nanomolar dissociation constants, stereoselectivity and modulation by other chemical classes of Ca(2+) antagonist drugs) were maintained in alpha1A(DHP), we analysed the pharmacological properties of (+)-[(3)H]isradipine-labelled alpha1A(DHP) Ca(2+) channels after heterologous expression. Binding of (+)-isradipine (K(i) 7.4 nM) and the non-benzoxadiazole DHPs nifedipine (K(i) 86 nM), (+/-)-nitrendipine (K(i) 33 nM) and (+/-)-nimodipine (K(i) 67 nM) to alpha1A(DHP) occurred at low nanomolar K(i) values. DHP binding was highly stereoselective [25-fold higher affinity for (+)-isradipine]. As with native channels it was stimulated by (+)-cis-diltiazem, (+)-tetrandrine and mibefradil. This suggested that the three-dimensional architecture of the channel pore was maintained within the non-L-type alpha1A subunit. To predict the three-dimensional arrangement of the DHP-binding residues we exploited the X-ray structure of a recently crystallized bacterial K(+) channel (KcsA) as a template. Our model is based on the assumption that the Ca(2+) channel S5 and S6 segments closely resemble the KcsA transmembrane folding architecture. In the absence of three-dimensional structural data for the alpha1 subunit this is currently the most reasonable approach for modelling this drug-interaction domain. Our model predicts that the previously identified DHP-binding residues form a binding pocket large enough to co-ordinate a single DHP molecule. It also implies that the four homologous Ca(2+) channel repeats are arranged in a clockwise manner.
Full Text
The Full Text of this article is available as a PDF (308.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berger W., Prinz H., Striessnig J., Kang H. C., Haugland R., Glossmann H. Complex molecular mechanism for dihydropyridine binding to L-type Ca(2+)-channels as revealed by fluorescence resonance energy transfer. Biochemistry. 1994 Oct 4;33(39):11875–11883. doi: 10.1021/bi00205a025. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Tsien R. W. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). Mol Pharmacol. 1995 Sep;48(3):540–549. [PubMed] [Google Scholar]
- Birnbaumer L., Campbell K. P., Catterall W. A., Harpold M. M., Hofmann F., Horne W. A., Mori Y., Schwartz A., Snutch T. P., Tanabe T. The naming of voltage-gated calcium channels. Neuron. 1994 Sep;13(3):505–506. doi: 10.1016/0896-6273(94)90021-3. [DOI] [PubMed] [Google Scholar]
- Boer R., Grassegger A., Schudt C., Glossmann H. (+)-Niguldipine binds with very high affinity to Ca2+ channels and to a subtype of alpha 1-adrenoceptors. Eur J Pharmacol. 1989 May 11;172(2):131–145. doi: 10.1016/0922-4106(89)90004-7. [DOI] [PubMed] [Google Scholar]
- Brauns T., Prinz H., Kimball S. D., Haugland R. P., Striessnig J., Glossmann H. L-type calcium channels: binding domains for dihydropyridines and benzothiazepines are located in close proximity to each other. Biochemistry. 1997 Mar 25;36(12):3625–3631. doi: 10.1021/bi9613584. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Gurnett C. A., Campbell K. P. Transmembrane auxiliary subunits of voltage-dependent ion channels. J Biol Chem. 1996 Nov 8;271(45):27975–27978. doi: 10.1074/jbc.271.45.27975. [DOI] [PubMed] [Google Scholar]
- Guy H. R., Conti F. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 1990 Jun;13(6):201–206. doi: 10.1016/0166-2236(90)90160-c. [DOI] [PubMed] [Google Scholar]
- Hering S., Aczél S., Grabner M., Döring F., Berjukow S., Mitterdorfer J., Sinnegger M. J., Striessnig J., Degtiar V. E., Wang Z. Transfer of high sensitivity for benzothiazepines from L-type to class A (BI) calcium channels. J Biol Chem. 1996 Oct 4;271(40):24471–24475. doi: 10.1074/jbc.271.40.24471. [DOI] [PubMed] [Google Scholar]
- Hockerman G. H., Peterson B. Z., Johnson B. D., Catterall W. A. Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol. 1997;37:361–396. doi: 10.1146/annurev.pharmtox.37.1.361. [DOI] [PubMed] [Google Scholar]
- Hockerman G. H., Peterson B. Z., Sharp E., Tanada T. N., Scheuer T., Catterall W. A. Construction of a high-affinity receptor site for dihydropyridine agonists and antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14906–14911. doi: 10.1073/pnas.94.26.14906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito H., Klugbauer N., Hofmann F. Transfer of the high affinity dihydropyridine sensitivity from L-type To non-L-type calcium channel. Mol Pharmacol. 1997 Oct;52(4):735–740. doi: 10.1124/mol.52.4.735. [DOI] [PubMed] [Google Scholar]
- King V. F., Garcia M. L., Himmel D., Reuben J. P., Lam Y. K., Pan J. X., Han G. Q., Kaczorowski G. J. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. J Biol Chem. 1988 Feb 15;263(5):2238–2244. [PubMed] [Google Scholar]
- Kraus R. L., Hering S., Grabner M., Ostler D., Striessnig J. Molecular mechanism of diltiazem interaction with L-type Ca2+ channels. J Biol Chem. 1998 Oct 16;273(42):27205–27212. doi: 10.1074/jbc.273.42.27205. [DOI] [PubMed] [Google Scholar]
- Kraus R. L., Sinnegger M. J., Glossmann H., Hering S., Striessnig J. Familial hemiplegic migraine mutations change alpha1A Ca2+ channel kinetics. J Biol Chem. 1998 Mar 6;273(10):5586–5590. doi: 10.1074/jbc.273.10.5586. [DOI] [PubMed] [Google Scholar]
- Miljanich G. P., Ramachandran J. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol. 1995;35:707–734. doi: 10.1146/annurev.pa.35.040195.003423. [DOI] [PubMed] [Google Scholar]
- Minor D. L., Jr, Masseling S. J., Jan Y. N., Jan L. Y. Transmembrane structure of an inwardly rectifying potassium channel. Cell. 1999 Mar 19;96(6):879–891. doi: 10.1016/s0092-8674(00)80597-8. [DOI] [PubMed] [Google Scholar]
- Mitterdorfer J., Froschmayr M., Grabner M., Striessnig J., Glossmann H. Calcium channels: the beta-subunit increases the affinity of dihydropyridine and Ca2+ binding sites of the alpha 1-subunit. FEBS Lett. 1994 Sep 26;352(2):141–145. doi: 10.1016/0014-5793(94)00938-4. [DOI] [PubMed] [Google Scholar]
- Mitterdorfer J., Wang Z., Sinnegger M. J., Hering S., Striessnig J., Grabner M., Glossmann H. Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity. J Biol Chem. 1996 Nov 29;271(48):30330–30335. doi: 10.1074/jbc.271.48.30330. [DOI] [PubMed] [Google Scholar]
- Moebius F. F., Burrows G. G., Hanner M., Schmid E., Striessnig J., Glossmann H. Identification of a 27-kDa high affinity phenylalkylamine-binding polypeptide as the sigma 1 binding site by photoaffinity labeling and ligand-directed antibodies. Mol Pharmacol. 1993 Nov;44(5):966–971. [PubMed] [Google Scholar]
- Moebius F. F., Burrows G. G., Striessnig J., Glossmann H. Biochemical characterization of a 22-kDa high affinity antiischemic drug-binding polypeptide in the endoplasmic reticulum of guinea pig liver: potential common target for antiischemic drug action. Mol Pharmacol. 1993 Feb;43(2):139–148. [PubMed] [Google Scholar]
- Peterson B. Z., Johnson B. D., Hockerman G. H., Acheson M., Scheuer T., Catterall W. A. Analysis of the dihydropyridine receptor site of L-type calcium channels by alanine-scanning mutagenesis. J Biol Chem. 1997 Jul 25;272(30):18752–18758. doi: 10.1074/jbc.272.30.18752. [DOI] [PubMed] [Google Scholar]
- Pichler M., Cassidy T. N., Reimer D., Haase H., Kraus R., Ostler D., Striessnig J. Beta subunit heterogeneity in neuronal L-type Ca2+ channels. J Biol Chem. 1997 May 23;272(21):13877–13882. doi: 10.1074/jbc.272.21.13877. [DOI] [PubMed] [Google Scholar]
- Schrempf H., Schmidt O., Kümmerlen R., Hinnah S., Müller D., Betzler M., Steinkamp T., Wagner R. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 1995 Nov 1;14(21):5170–5178. doi: 10.1002/j.1460-2075.1995.tb00201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster A., Lacinová L., Klugbauer N., Ito H., Birnbaumer L., Hofmann F. The IVS6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines. EMBO J. 1996 May 15;15(10):2365–2370. [PMC free article] [PubMed] [Google Scholar]
- Sinnegger M. J., Wang Z., Grabner M., Hering S., Striessnig J., Glossmann H., Mitterdorfer J. Nine L-type amino acid residues confer full 1,4-dihydropyridine sensitivity to the neuronal calcium channel alpha1A subunit. Role of L-type Met1188. J Biol Chem. 1997 Oct 31;272(44):27686–27693. doi: 10.1074/jbc.272.44.27686. [DOI] [PubMed] [Google Scholar]
- Snutch T. P., Tomlinson W. J., Leonard J. P., Gilbert M. M. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron. 1991 Jul;7(1):45–57. doi: 10.1016/0896-6273(91)90073-9. [DOI] [PubMed] [Google Scholar]
- Striessnig J., Goll A., Moosburger K., Glossmann H. Purified calcium channels have three allosterically coupled drug receptors. FEBS Lett. 1986 Mar 3;197(1-2):204–210. doi: 10.1016/0014-5793(86)80327-1. [DOI] [PubMed] [Google Scholar]
- Striessnig J., Grabner M., Mitterdorfer J., Hering S., Sinnegger M. J., Glossmann H. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci. 1998 Mar;19(3):108–115. doi: 10.1016/s0165-6147(98)01171-7. [DOI] [PubMed] [Google Scholar]
- Striessnig J., Zernig G., Glossmann H. Human red-blood-cell Ca2+-antagonist binding sites. Evidence for an unusual receptor coupled to the nucleoside transporter. Eur J Biochem. 1985 Jul 1;150(1):67–77. doi: 10.1111/j.1432-1033.1985.tb08989.x. [DOI] [PubMed] [Google Scholar]
- Suh-Kim H., Wei X., Birnbaumer L. Subunit composition is a major determinant in high affinity binding of a Ca2+ channel blocker. Mol Pharmacol. 1996 Nov;50(5):1330–1337. [PubMed] [Google Scholar]
- Welling A., Ludwig A., Zimmer S., Klugbauer N., Flockerzi V., Hofmann F. Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res. 1997 Oct;81(4):526–532. doi: 10.1161/01.res.81.4.526. [DOI] [PubMed] [Google Scholar]
- Wieland K., Zuurmond H. M., Krasel C., Ijzerman A. P., Lohse M. J. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9276–9281. doi: 10.1073/pnas.93.17.9276. [DOI] [PMC free article] [PubMed] [Google Scholar]