Abstract
A series of omega-epoxyalkyl glycosides of D-xylopyranose, xylobiose and xylotriose were tested as potential active-site-directed inhibitors of xylanases from glycoside hydrolase families10 and 11. Whereas family-10 enzymes (Thermoascus aurantiacus Xyn and Clostridium thermocellum Xyn Z) are resistant toelectrophilic attack of active-site carboxyl residues, glycosidehydrolases of family 11 (Thermomyces lanuginosus Xyn and Trichoderma reesei Xyn II) are irreversibly inhibited. Theapparent inactivation and association constants (k(i), 1/K(i)) are one order of magnitude higher for thexylobiose and xylotriose derivatives. The effects of the aglycone chainlength can clearly be described. Xylobiose and n-alkyl beta-D-xylopyranosides are competitive ligands and provide protectionagainst inactivation. MS measurements showed 1:1 stoichiometries inmost labelling experiments. Electrospray ionization MS/MS analysisrevealed the nucleophile Glu(86) as the modified residue inthe T. lanuginosus xylanase when 2,3-epoxypropyl beta-D-xylopyranoside was used, whereas the acid/base catalyst Glu(178) was modified by the 3,4-epoxybutyl derivative. The active-site residues Glu(86) and Glu(177) in T. reesei Xyn II are similarly modified, confirming earlier X-raycrystallographic data [Havukainen, Törrönen, Laitinen and Rouvinen (1996)Biochemistry 35, 9617-9624]. The inability of the omega-epoxyalkyl xylo(oligo)saccharide derivatives to inactivate family-10enzymes is discussed in terms of different ligand-subsiteinteractions.
Full Text
The Full Text of this article is available as a PDF (208.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett N. A., Ryan J., Biely P., Vrsanska M., Kremnicky L., Macris B. J., Kekos D., Christakopoulos P., Katapodis P., Claeyssens M. Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydr Res. 1998 Jan;306(3):445–455. doi: 10.1016/s0008-6215(97)10076-3. [DOI] [PubMed] [Google Scholar]
- Biely P., Kluepfel D., Morosoli R., Shareck F. Mode of action of three endo-beta-1,4-xylanases of Streptomyces lividans. Biochim Biophys Acta. 1993 Mar 26;1162(3):246–254. doi: 10.1016/0167-4838(93)90288-3. [DOI] [PubMed] [Google Scholar]
- Biely P., Krátký Z., Vrsanská M. Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur J Biochem. 1981 Oct;119(3):559–564. doi: 10.1111/j.1432-1033.1981.tb05644.x. [DOI] [PubMed] [Google Scholar]
- Biely P., Vrsanská M., Krátký Z. Mechanisms of substrate digestion by endo-1,4-beta-xylanase of Cryptococcus albidus. Lysozyme-type pattern of action. Eur J Biochem. 1981 Oct;119(3):565–571. doi: 10.1111/j.1432-1033.1981.tb05645.x. [DOI] [PubMed] [Google Scholar]
- Biely P., Vrsanská M., Tenkanen M., Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol. 1997 Sep 16;57(1-3):151–166. doi: 10.1016/s0168-1656(97)00096-5. [DOI] [PubMed] [Google Scholar]
- Bray M. R., Clarke A. J. Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem. 1992 Feb 15;204(1):191–196. doi: 10.1111/j.1432-1033.1992.tb16623.x. [DOI] [PubMed] [Google Scholar]
- Charnock S. J., Spurway T. D., Xie H., Beylot M. H., Virden R., Warren R. A., Hazlewood G. P., Gilbert H. J. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem. 1998 Nov 27;273(48):32187–32199. doi: 10.1074/jbc.273.48.32187. [DOI] [PubMed] [Google Scholar]
- Claeyssens M., Henrissat B. Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci. 1992 Oct;1(10):1293–1297. doi: 10.1002/pro.5560011008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Swenson L., Green R., Wei Y., Morosoli R., Shareck F., Kluepfel D., Derewenda Z. S. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J Biol Chem. 1994 Aug 19;269(33):20811–20814. [PubMed] [Google Scholar]
- Dominguez R., Souchon H., Spinelli S., Dauter Z., Wilson K. S., Chauvaux S., Béguin P., Alzari P. M. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol. 1995 Jul;2(7):569–576. doi: 10.1038/nsb0795-569. [DOI] [PubMed] [Google Scholar]
- Gebler J., Gilkes N. R., Claeyssens M., Wilson D. B., Béguin P., Wakarchuk W. W., Kilburn D. G., Miller R. C., Jr, Warren R. A., Withers S. G. Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J Biol Chem. 1992 Jun 25;267(18):12559–12561. [PubMed] [Google Scholar]
- Gruber K., Klintschar G., Hayn M., Schlacher A., Steiner W., Kratky C. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry. 1998 Sep 29;37(39):13475–13485. doi: 10.1021/bi980864l. [DOI] [PubMed] [Google Scholar]
- Grépinet O., Chebrou M. C., Béguin P. Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum. J Bacteriol. 1988 Oct;170(10):4576–4581. doi: 10.1128/jb.170.10.4576-4581.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris G. W., Jenkins J. A., Connerton I., Cummings N., Lo Leggio L., Scott M., Hazlewood G. P., Laurie J. I., Gilbert H. J., Pickersgill R. W. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure. 1994 Nov 15;2(11):1107–1116. doi: 10.1016/s0969-2126(94)00112-x. [DOI] [PubMed] [Google Scholar]
- Havukainen R., Törrönen A., Laitinen T., Rouvinen J. Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei. Biochemistry. 1996 Jul 23;35(29):9617–9624. doi: 10.1021/bi953052n. [DOI] [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klarskov K., Piens K., Ståhlberg J., Høj P. B., Beeumen J. V., Claeyssens M. Cellobiohydrolase I from Trichoderma reesei: identification of an active-site nucleophile and additional information on sequence including the glycosylation pattern of the core protein. Carbohydr Res. 1997 Nov 10;304(2):143–154. doi: 10.1016/s0008-6215(97)00215-2. [DOI] [PubMed] [Google Scholar]
- Lo Leggio L., Kalogiannis S., Bhat M. K., Pickersgill R. W. High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Proteins. 1999 Aug 15;36(3):295–306. [PubMed] [Google Scholar]
- Macarron R., van Beeumen J., Henrissat B., de la Mata I., Claeyssens M. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. FEBS Lett. 1993 Jan 25;316(2):137–140. doi: 10.1016/0014-5793(93)81202-b. [DOI] [PubMed] [Google Scholar]
- Natesh R., Bhanumoorthy P., Vithayathil P. J., Sekar K., Ramakumar S., Viswamitra M. A. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J Mol Biol. 1999 May 21;288(5):999–1012. doi: 10.1006/jmbi.1999.2727. [DOI] [PubMed] [Google Scholar]
- Nitta Y., Isoda Y., Toda H., Sakiyama F. Identification of glutamic acid 186 affinity-labeled by 2,3-epoxypropyl alpha-D-glucopyranoside in soybean beta-amylase. J Biochem. 1989 Apr;105(4):573–576. doi: 10.1093/oxfordjournals.jbchem.a122706. [DOI] [PubMed] [Google Scholar]
- Notenboom V., Birsan C., Nitz M., Rose D. R., Warren R. A., Withers S. G. Insights into transition state stabilization of the beta-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants. Nat Struct Biol. 1998 Sep;5(9):812–818. doi: 10.1038/1852. [DOI] [PubMed] [Google Scholar]
- Roberge M., Shareck F., Morosoli R., Kluepfel D., Dupont C. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Protein Eng. 1999 Mar;12(3):251–257. doi: 10.1093/protein/12.3.251. [DOI] [PubMed] [Google Scholar]
- Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601–601. doi: 10.1002/bms.1200111109. [DOI] [PubMed] [Google Scholar]
- Schmidt A., Gübitz G. M., Kratky C. Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. Biochemistry. 1999 Feb 23;38(8):2403–2412. doi: 10.1021/bi982108l. [DOI] [PubMed] [Google Scholar]
- Schmidt A., Schlacher A., Steiner W., Schwab H., Kratky C. Structure of the xylanase from Penicillium simplicissimum. Protein Sci. 1998 Oct;7(10):2081–2088. doi: 10.1002/pro.5560071004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Törrönen A., Harkki A., Rouvinen J. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 1994 Jun 1;13(11):2493–2501. doi: 10.1002/j.1460-2075.1994.tb06536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Törrönen A., Kubicek C. P., Henrissat B. Amino acid sequence similarities between low molecular weight endo-1,4-beta-xylanases and family H cellulases revealed by clustering analysis. FEBS Lett. 1993 Apr 26;321(2-3):135–139. doi: 10.1016/0014-5793(93)80094-b. [DOI] [PubMed] [Google Scholar]
- Törrönen A., Mach R. L., Messner R., Gonzalez R., Kalkkinen N., Harkki A., Kubicek C. P. The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (N Y) 1992 Nov;10(11):1461–1465. doi: 10.1038/nbt1192-1461. [DOI] [PubMed] [Google Scholar]
- Wakarchuk W. W., Campbell R. L., Sung W. L., Davoodi J., Yaguchi M. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 1994 Mar;3(3):467–475. doi: 10.1002/pro.5560030312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White A., Tull D., Johns K., Withers S. G., Rose D. R. Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nat Struct Biol. 1996 Feb;3(2):149–154. doi: 10.1038/nsb0296-149. [DOI] [PubMed] [Google Scholar]
- White A., Withers S. G., Gilkes N. R., Rose D. R. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry. 1994 Oct 25;33(42):12546–12552. doi: 10.1021/bi00208a003. [DOI] [PubMed] [Google Scholar]
- Withers S. G., Aebersold R. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 1995 Mar;4(3):361–372. doi: 10.1002/pro.5560040302. [DOI] [PMC free article] [PubMed] [Google Scholar]