Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):875–880.

Polyamines directly induce release of cytochrome c from heart mitochondria.

C Stefanelli 1, I Stanic' 1, M Zini 1, F Bonavita 1, F Flamigni 1, L Zambonin 1, L Landi 1, C Pignatti 1, C Guarnieri 1, C M Caldarera 1
PMCID: PMC1221027  PMID: 10769194

Abstract

Cytochrome c release from mitochondria to the cytosol represents a critical step in apoptosis, correlated to the activation of the caspase cascade. In this report, we show that addition of micromolar concentrations of polyamines to isolated rat heart mitochondria induces the release of cytochrome c. Spermine, which is effective at concentrations of 10-100 microM, is more potent than spermidine, whereas putrescine has no effect up to 1 mM. The release of cytochrome c caused by spermine is a rapid, saturable and selective process that is independent of mitochondria damage. Spermine, unlike polylysine, is able to release a discrete amount of cytochrome c from intact, functional mitochondria. The cytochrome c-releasing power of spermine is not affected by cyclosporin A, differently from the effect of permeability transition inducers. In a cardiac cell-free model of apoptosis, the latent caspase activity of cytosolic extracts from cardiomyocytes could be activated by cytochrome c released from spermine-treated heart mitochondria. These data indicate a novel mechanism of cytochrome c release from the mitochondrion, and suggest that prolonged and sustained elevation of polyamines, characteristic of some pathologies such as heart hypertrophy, could be involved in the development of apoptosis.

Full Text

The Full Text of this article is available as a PDF (162.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bialik S., Cryns V. L., Drincic A., Miyata S., Wollowick A. L., Srinivasan A., Kitsis R. N. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res. 1999 Sep 3;85(5):403–414. doi: 10.1161/01.res.85.5.403. [DOI] [PubMed] [Google Scholar]
  2. Bordin L., Cattapan F., Clari G., Toninello A., Siliprandi N., Moret V. Spermine-mediated casein kinase II-uptake by rat liver mitochondria. Biochim Biophys Acta. 1994 Apr 21;1199(3):266–270. doi: 10.1016/0304-4165(94)90005-1. [DOI] [PubMed] [Google Scholar]
  3. Brunton V. G., Grant M. H., Wallace H. M. Mechanisms of spermine toxicity in baby-hamster kidney (BHK) cells. The role of amine oxidases and oxidative stress. Biochem J. 1991 Nov 15;280(Pt 1):193–198. doi: 10.1042/bj2800193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casero R. A., Jr, Pegg A. E. Spermidine/spermine N1-acetyltransferase--the turning point in polyamine metabolism. FASEB J. 1993 May;7(8):653–661. [PubMed] [Google Scholar]
  5. Chauhan D., Pandey P., Ogata A., Teoh G., Krett N., Halgren R., Rosen S., Kufe D., Kharbanda S., Anderson K. Cytochrome c-dependent and -independent induction of apoptosis in multiple myeloma cells. J Biol Chem. 1997 Nov 28;272(48):29995–29997. doi: 10.1074/jbc.272.48.29995. [DOI] [PubMed] [Google Scholar]
  6. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999 Jul 15;341(Pt 2):233–249. [PMC free article] [PubMed] [Google Scholar]
  7. Davis R. H., Morris D. R., Coffino P. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev. 1992 Jun;56(2):280–290. doi: 10.1128/mr.56.2.280-290.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Díez J., Fortuño M. A., Ravassa S. Apoptosis in hypertensive heart disease. Curr Opin Cardiol. 1998 Sep;13(5):317–325. doi: 10.1097/00001573-199809000-00005. [DOI] [PubMed] [Google Scholar]
  9. Ellerby H. M., Martin S. J., Ellerby L. M., Naiem S. S., Rabizadeh S., Salvesen G. S., Casiano C. A., Cashman N. R., Green D. R., Bredesen D. E. Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. J Neurosci. 1997 Aug 15;17(16):6165–6178. [PMC free article] [PubMed] [Google Scholar]
  10. Flamigni F., Rossoni C., Stefanelli C., Caldarera C. M. Polyamine metabolism and function in the heart. J Mol Cell Cardiol. 1986 Jan;18(1):3–11. doi: 10.1016/s0022-2828(86)80977-4. [DOI] [PubMed] [Google Scholar]
  11. González-Bosch C., Marcote M. J., Hernández-Yago J. Role of polyamines in the transport in vitro of the precursor of ornithine transcarbamylase. Biochem J. 1991 Nov 1;279(Pt 3):815–820. doi: 10.1042/bj2790815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Green D. R., Reed J. C. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
  13. Ibrahim J., Schachter M., Hughes A. D., Sever P. S. Role of polyamines in hypertension induced by angiotensin II. Cardiovasc Res. 1995 Jan;29(1):50–56. [PubMed] [Google Scholar]
  14. Igarashi K., Kashiwagi K., Kobayashi H., Ohnishi R., Kakegawa T., Nagasu A., Hirose S. Effect of polyamines on mitochondrial F1-ATPase catalyzed reactions. J Biochem. 1989 Aug;106(2):294–298. doi: 10.1093/oxfordjournals.jbchem.a122847. [DOI] [PubMed] [Google Scholar]
  15. Kantrow S. P., Piantadosi C. A. Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun. 1997 Mar 27;232(3):669–671. doi: 10.1006/bbrc.1997.6353. [DOI] [PubMed] [Google Scholar]
  16. Krämer R., Mayr U., Heberger C., Tsompanidou S. Activation of the ADP/ATP carrier from mitochondria by cationic effectors. Biochim Biophys Acta. 1986 Feb 27;855(2):201–210. doi: 10.1016/0005-2736(86)90166-5. [DOI] [PubMed] [Google Scholar]
  17. Köhler C., Gahm A., Noma T., Nakazawa A., Orrenius S., Zhivotovsky B. Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett. 1999 Mar 19;447(1):10–12. doi: 10.1016/s0014-5793(99)00251-3. [DOI] [PubMed] [Google Scholar]
  18. Lapidus R. G., Sokolove P. M. Inhibition by spermine of the inner membrane permeability transition of isolated rat heart mitochondria. FEBS Lett. 1992 Nov 30;313(3):314–318. doi: 10.1016/0014-5793(92)81217-a. [DOI] [PubMed] [Google Scholar]
  19. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  20. Marzo I., Brenner C., Zamzami N., Jürgensmeier J. M., Susin S. A., Vieira H. L., Prévost M. C., Xie Z., Matsuyama S., Reed J. C. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998 Sep 25;281(5385):2027–2031. doi: 10.1126/science.281.5385.2027. [DOI] [PubMed] [Google Scholar]
  21. Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miralles V. J., Marcote M. J., Hernández-Yago J., Grisolía S. Loading rat liver mitochondria with apocytochrome c provokes exit of cytochrome c. Arch Biochem Biophys. 1988 Nov 1;266(2):516–521. doi: 10.1016/0003-9861(88)90284-6. [DOI] [PubMed] [Google Scholar]
  23. Neuburger M., Journet E. P., Bligny R., Carde J. P., Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982 Aug;217(1):312–323. doi: 10.1016/0003-9861(82)90507-0. [DOI] [PubMed] [Google Scholar]
  24. Packham G., Cleveland J. L. Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Mol Cell Biol. 1994 Sep;14(9):5741–5747. doi: 10.1128/mcb.14.9.5741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pegg A. E., Hibasami H. Polyamine metabolism during cardiac hypertrophy. Am J Physiol. 1980 Nov;239(5):E372–E378. doi: 10.1152/ajpendo.1980.239.5.E372. [DOI] [PubMed] [Google Scholar]
  26. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  27. Petit P. X., Goubern M., Diolez P., Susin S. A., Zamzami N., Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett. 1998 Apr 10;426(1):111–116. doi: 10.1016/s0014-5793(98)00318-4. [DOI] [PubMed] [Google Scholar]
  28. Poulin R., Pelletier G., Pegg A. E. Induction of apoptosis by excessive polyamine accumulation in ornithine decarboxylase-overproducing L1210 cells. Biochem J. 1995 Nov 1;311(Pt 3):723–727. doi: 10.1042/bj3110723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rigobello M. P., Toninello A., Siliprandi D., Bindoli A. Effect of spermine on mitochondrial glutathione release. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1276–1281. doi: 10.1006/bbrc.1993.1961. [DOI] [PubMed] [Google Scholar]
  30. Rustenbeck I., Löptien D., Fricke K., Lenzen S., Reiter H. Polyamine modulation of mitochondrial calcium transport. II. Inhibition of mitochondrial permeability transition by aliphatic polyamines but not by aminoglucosides. Biochem Pharmacol. 1998 Oct 15;56(8):987–995. doi: 10.1016/s0006-2952(98)00233-0. [DOI] [PubMed] [Google Scholar]
  31. Rytömaa M., Kinnunen P. K. Dissociation of cytochrome c from liposomes by histone H1. Comparison with basic peptides. Biochemistry. 1996 Apr 9;35(14):4529–4539. doi: 10.1021/bi952413w. [DOI] [PubMed] [Google Scholar]
  32. Salvesen G. S., Dixit V. M. Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):10964–10967. doi: 10.1073/pnas.96.20.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scarlett J. L., Murphy M. P. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett. 1997 Dec 1;418(3):282–286. doi: 10.1016/s0014-5793(97)01391-4. [DOI] [PubMed] [Google Scholar]
  34. Stefanelli C., Bonavita F., Stanic' I., Mignani M., Facchini A., Pignatti C., Flamigni F., Caldarera C. M. Spermine causes caspase activation in leukaemia cells. FEBS Lett. 1998 Oct 23;437(3):233–236. doi: 10.1016/s0014-5793(98)01239-3. [DOI] [PubMed] [Google Scholar]
  35. Stefanelli C., Bonavita F., Stanic' I., Pignatti C., Flamigni F., Guarnieri C., Caldarera C. M. Spermine triggers the activation of caspase-3 in a cell-free model of apoptosis. FEBS Lett. 1999 May 21;451(2):95–98. doi: 10.1016/s0014-5793(99)00549-9. [DOI] [PubMed] [Google Scholar]
  36. Stefanelli C., Bonavita F., Stanic I., Pignatti C., Farruggia G., Masotti L., Guarnieri C., Caldarera C. M. Inhibition of etoposide-induced apoptosis with peptide aldehyde inhibitors of proteasome. Biochem J. 1998 Jun 15;332(Pt 3):661–665. doi: 10.1042/bj3320661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stefanelli C., Pignatti C., Tantini B., Stanic I., Bonavita F., Muscari C., Guarnieri C., Clo C., Caldarera C. M. Nitric oxide can function as either a killer molecule or an antiapoptotic effector in cardiomyocytes. Biochim Biophys Acta. 1999 Jul 8;1450(3):406–413. doi: 10.1016/s0167-4889(99)00045-2. [DOI] [PubMed] [Google Scholar]
  38. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  39. Teiger E., Than V. D., Richard L., Wisnewsky C., Tea B. S., Gaboury L., Tremblay J., Schwartz K., Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest. 1996 Jun 15;97(12):2891–2897. doi: 10.1172/JCI118747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
  41. Tobias K. E., Kahana C. Exposure to ornithine results in excessive accumulation of putrescine and apoptotic cell death in ornithine decarboxylase overproducing mouse myeloma cells. Cell Growth Differ. 1995 Oct;6(10):1279–1285. [PubMed] [Google Scholar]
  42. Toninello A., Dalla Via L., Siliprandi D., Garlid K. D. Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem. 1992 Sep 15;267(26):18393–18397. [PubMed] [Google Scholar]
  43. Toninello A., Dalla Via L., Testa S., Siliprandi D., Siliprandi N. Transport and action of spermine in rat heart mitochondria. Cardioscience. 1990 Dec;1(4):287–294. [PubMed] [Google Scholar]
  44. Xie X., Tome M. E., Gerner E. W. Loss of intracellular putrescine pool-size regulation induces apoptosis. Exp Cell Res. 1997 Feb 1;230(2):386–392. doi: 10.1006/excr.1996.3442. [DOI] [PubMed] [Google Scholar]
  45. Yang J., Liu X., Bhalla K., Kim C. N., Ibrado A. M., Cai J., Peng T. I., Jones D. P., Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997 Feb 21;275(5303):1129–1132. doi: 10.1126/science.275.5303.1129. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES