Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):881–886.

Heteroduplex DNA and ATP induced conformational changes of a MutS mismatch repair protein from Thermus aquaticus.

I Biswas 1, R Vijayvargia 1
PMCID: PMC1221028  PMID: 10769195

Abstract

ATP hydrolysis by MutS homologues is required for the function of these proteins in mismatch repair. However, the function of ATP hydrolysis in the repair reaction is not very clear. We have examined the role of ATP hydrolysis in oligomerization of Thermus aquaticus (Taq) MutS protein in solution. Analytical gel filtration and cross-linking of MutS protein with disuccinimidyl suburate suggest that TaqMutS is a dimer in the presence of ATP. ATP binding and hydrolysis by TaqMutS reduces the heteroduplex-DNA binding by the protein. Using limited proteolysis we detected extensive conformational changes of the TaqMutS protein in the presence of ATP and heteroduplex DNA. Heteroduplex-DNA binding is necessary for the observed conformational changes since F39A mutant protein defective in DNA binding does not display ATP-induced conformational changes. The implications of the observed conformational changes in the MutS protein are discussed with respect to two different models proposed for the role of ATP hydrolysis by MutS in DNA mismatch repair.

Full Text

The Full Text of this article is available as a PDF (201.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Sokolsky T., Studamire B., Miret J. J., Lahue R. S. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol. 1997 May;17(5):2436–2447. doi: 10.1128/mcb.17.5.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. doi: 10.1128/mcb.16.10.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen D. J., Makhov A., Grilley M., Taylor J., Thresher R., Modrich P., Griffith J. D. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 1997 Jul 16;16(14):4467–4476. doi: 10.1093/emboj/16.14.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Au K. G., Welsh K., Modrich P. Initiation of methyl-directed mismatch repair. J Biol Chem. 1992 Jun 15;267(17):12142–12148. [PubMed] [Google Scholar]
  5. Biswas I., Ban C., Fleming K. G., Qin J., Lary J. W., Yphantis D. A., Yang W., Hsieh P. Oligomerization of a MutS mismatch repair protein from Thermus aquaticus. J Biol Chem. 1999 Aug 13;274(33):23673–23678. doi: 10.1074/jbc.274.33.23673. [DOI] [PubMed] [Google Scholar]
  6. Biswas I., Hsieh P. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J Biol Chem. 1996 Mar 1;271(9):5040–5048. doi: 10.1074/jbc.271.9.5040. [DOI] [PubMed] [Google Scholar]
  7. Blackwell L. J., Martik D., Bjornson K. P., Bjornson E. S., Modrich P. Nucleotide-promoted release of hMutSalpha from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J Biol Chem. 1998 Nov 27;273(48):32055–32062. doi: 10.1074/jbc.273.48.32055. [DOI] [PubMed] [Google Scholar]
  8. Csermely P., Kajtár J., Hollósi M., Jalsovszky G., Holly S., Kahn C. R., Gergely P., Jr, Söti C., Mihály K., Somogyi J. ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J Biol Chem. 1993 Jan 25;268(3):1901–1907. [PubMed] [Google Scholar]
  9. Dao V., Modrich P. Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem. 1998 Apr 10;273(15):9202–9207. doi: 10.1074/jbc.273.15.9202. [DOI] [PubMed] [Google Scholar]
  10. Drummond J. T., Li G. M., Longley M. J., Modrich P. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science. 1995 Jun 30;268(5219):1909–1912. doi: 10.1126/science.7604264. [DOI] [PubMed] [Google Scholar]
  11. Gradia S., Acharya S., Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell. 1997 Dec 26;91(7):995–1005. doi: 10.1016/s0092-8674(00)80490-0. [DOI] [PubMed] [Google Scholar]
  12. Grilley M., Welsh K. M., Su S. S., Modrich P. Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem. 1989 Jan 15;264(2):1000–1004. [PubMed] [Google Scholar]
  13. Haber L. T., Walker G. C. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 1991 Sep;10(9):2707–2715. doi: 10.1002/j.1460-2075.1991.tb07815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iaccarino I., Marra G., Palombo F., Jiricny J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J. 1998 May 1;17(9):2677–2686. doi: 10.1093/emboj/17.9.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lahue R. S., Au K. G., Modrich P. DNA mismatch correction in a defined system. Science. 1989 Jul 14;245(4914):160–164. doi: 10.1126/science.2665076. [DOI] [PubMed] [Google Scholar]
  16. Malkov V. A., Biswas I., Camerini-Otero R. D., Hsieh P. Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA. J Biol Chem. 1997 Sep 19;272(38):23811–23817. doi: 10.1074/jbc.272.38.23811. [DOI] [PubMed] [Google Scholar]
  17. Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. [DOI] [PubMed] [Google Scholar]
  18. Nakagawa N., Masui R., Kato R., Kuramitsu S. Domain structure of Thermus thermophilus UvrB protein. Similarity in domain structure to a helicase. J Biol Chem. 1997 Sep 5;272(36):22703–22713. doi: 10.1074/jbc.272.36.22703. [DOI] [PubMed] [Google Scholar]
  19. Schneider E., Wilken S., Schmid R. Nucleotide-induced conformational changes of MalK, a bacterial ATP binding cassette transporter protein. J Biol Chem. 1994 Aug 12;269(32):20456–20461. [PubMed] [Google Scholar]
  20. Sekiguchi J., Shuman S. Proteolytic footprinting of vaccinia topoisomerase bound to DNA. J Biol Chem. 1995 May 12;270(19):11636–11645. doi: 10.1074/jbc.270.19.11636. [DOI] [PubMed] [Google Scholar]
  21. Studamire B., Quach T., Alani E. Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol Cell Biol. 1998 Dec;18(12):7590–7601. doi: 10.1128/mcb.18.12.7590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Su S. S., Modrich P. Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5057–5061. doi: 10.1073/pnas.83.14.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tachiki H., Kato R., Masui R., Hasegawa K., Itakura H., Fukuyama K., Kuramitsu S. Domain organization and functional analysis of Thermus thermophilus MutS protein. Nucleic Acids Res. 1998 Sep 15;26(18):4153–4159. doi: 10.1093/nar/26.18.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Welsh K. M., Lu A. L., Clark S., Modrich P. Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem. 1987 Nov 15;262(32):15624–15629. [PubMed] [Google Scholar]
  25. Wu T. H., Marinus M. G. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol. 1994 Sep;176(17):5393–5400. doi: 10.1128/jb.176.17.5393-5400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamaguchi M., Dao V., Modrich P. MutS and MutL activate DNA helicase II in a mismatch-dependent manner. J Biol Chem. 1998 Apr 10;273(15):9197–9201. doi: 10.1074/jbc.273.15.9197. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES