Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 15;348(Pt 1):15–19.

Intracellular green fluorescent protein-polyalanine aggregates are associated with cell death.

J Rankin 1, A Wyttenbach 1, D C Rubinsztein 1
PMCID: PMC1221030  PMID: 10794708

Abstract

Eight diseases, exemplified by Huntington's disease and spinocerebellar ataxia type 1, are caused by CAG-repeat expansion mutations. The CAG repeats are translated into expanded polyglutamine tracts, which are associated with deleterious novel functions. While these diseases are characterized by intraneuronal aggregate formation, it is unclear whether the aggregates cause disease. We have addressed this debate by generating intracellular aggregates with green fluorescent protein (GFP) fused to 19-37 alanines. No aggregates were seen in cells expressing native GFP or GFP fused to seven alanines. Aggregate-containing cells expressing GFP fused to 19-37 polyalanines show high rates of nuclear fragmentation compared with cells expressing the same constructs without aggregates, or cells expressing GFP fused to seven alanines. This suggests an association between aggregate formation and cell death.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becher M. W., Kotzuk J. A., Sharp A. H., Davies S. W., Bates G. P., Price D. L., Ross C. A. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis. 1998 Apr;4(6):387–397. doi: 10.1006/nbdi.1998.0168. [DOI] [PubMed] [Google Scholar]
  2. Blondelle S. E., Forood B., Houghten R. A., Pérez-Payá E. Polyalanine-based peptides as models for self-associated beta-pleated-sheet complexes. Biochemistry. 1997 Jul 8;36(27):8393–8400. doi: 10.1021/bi963015b. [DOI] [PubMed] [Google Scholar]
  3. Brais B., Bouchard J. P., Xie Y. G., Rochefort D. L., Chrétien N., Tomé F. M., Lafrenière R. G., Rommens J. M., Uyama E., Nohira O. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet. 1998 Feb;18(2):164–167. doi: 10.1038/ng0298-164. [DOI] [PubMed] [Google Scholar]
  4. Chai Y., Koppenhafer S. L., Bonini N. M., Paulson H. L. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci. 1999 Dec 1;19(23):10338–10347. doi: 10.1523/JNEUROSCI.19-23-10338.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper J. K., Schilling G., Peters M. F., Herring W. J., Sharp A. H., Kaminsky Z., Masone J., Khan F. A., Delanoy M., Borchelt D. R. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet. 1998 May;7(5):783–790. doi: 10.1093/hmg/7.5.783. [DOI] [PubMed] [Google Scholar]
  6. Cummings C. J., Reinstein E., Sun Y., Antalffy B., Jiang Y., Ciechanover A., Orr H. T., Beaudet A. L., Zoghbi H. Y. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron. 1999 Dec;24(4):879–892. doi: 10.1016/s0896-6273(00)81035-1. [DOI] [PubMed] [Google Scholar]
  7. Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L., Bates G. P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997 Aug 8;90(3):537–548. doi: 10.1016/s0092-8674(00)80513-9. [DOI] [PubMed] [Google Scholar]
  8. DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997 Sep 26;277(5334):1990–1993. doi: 10.1126/science.277.5334.1990. [DOI] [PubMed] [Google Scholar]
  9. Ellerby L. M., Hackam A. S., Propp S. S., Ellerby H. M., Rabizadeh S., Cashman N. R., Trifiro M. A., Pinsky L., Wellington C. L., Salvesen G. S. Kennedy's disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J Neurochem. 1999 Jan;72(1):185–195. doi: 10.1046/j.1471-4159.1999.0720185.x. [DOI] [PubMed] [Google Scholar]
  10. Holmberg M., Duyckaerts C., Dürr A., Cancel G., Gourfinkel-An I., Damier P., Faucheux B., Trottier Y., Hirsch E. C., Agid Y. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet. 1998 May;7(5):913–918. doi: 10.1093/hmg/7.5.913. [DOI] [PubMed] [Google Scholar]
  11. Huang C. C., Faber P. W., Persichetti F., Mittal V., Vonsattel J. P., MacDonald M. E., Gusella J. F. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet. 1998 Jul;24(4):217–233. doi: 10.1023/b:scam.0000007124.19463.e5. [DOI] [PubMed] [Google Scholar]
  12. Igarashi S., Koide R., Shimohata T., Yamada M., Hayashi Y., Takano H., Date H., Oyake M., Sato T., Sato A. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet. 1998 Feb;18(2):111–117. doi: 10.1038/ng0298-111. [DOI] [PubMed] [Google Scholar]
  13. Ishikawa K., Fujigasaki H., Saegusa H., Ohwada K., Fujita T., Iwamoto H., Komatsuzaki Y., Toru S., Toriyama H., Watanabe M. Abundant expression and cytoplasmic aggregations of [alpha]1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum Mol Genet. 1999 Jul;8(7):1185–1193. doi: 10.1093/hmg/8.7.1185. [DOI] [PubMed] [Google Scholar]
  14. Kazantsev A., Preisinger E., Dranovsky A., Goldgaber D., Housman D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11404–11409. doi: 10.1073/pnas.96.20.11404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klement I. A., Skinner P. J., Kaytor M. D., Yi H., Hersch S. M., Clark H. B., Zoghbi H. Y., Orr H. T. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998 Oct 2;95(1):41–53. doi: 10.1016/s0092-8674(00)81781-x. [DOI] [PubMed] [Google Scholar]
  16. Koyano S., Uchihara T., Fujigasaki H., Nakamura A., Yagishita S., Iwabuchi K. Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study. Neurosci Lett. 1999 Oct 1;273(2):117–120. doi: 10.1016/s0304-3940(99)00656-4. [DOI] [PubMed] [Google Scholar]
  17. Li M., Miwa S., Kobayashi Y., Merry D. E., Yamamoto M., Tanaka F., Doyu M., Hashizume Y., Fischbeck K. H., Sobue G. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol. 1998 Aug;44(2):249–254. doi: 10.1002/ana.410440216. [DOI] [PubMed] [Google Scholar]
  18. Martindale D., Hackam A., Wieczorek A., Ellerby L., Wellington C., McCutcheon K., Singaraja R., Kazemi-Esfarjani P., Devon R., Kim S. U. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet. 1998 Feb;18(2):150–154. doi: 10.1038/ng0298-150. [DOI] [PubMed] [Google Scholar]
  19. Paulson H. L., Perez M. K., Trottier Y., Trojanowski J. Q., Subramony S. H., Das S. S., Vig P., Mandel J. L., Fischbeck K. H., Pittman R. N. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997 Aug;19(2):333–344. doi: 10.1016/s0896-6273(00)80943-5. [DOI] [PubMed] [Google Scholar]
  20. Perutz M. F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci. 1999 Feb;24(2):58–63. doi: 10.1016/s0968-0004(98)01350-4. [DOI] [PubMed] [Google Scholar]
  21. Rubinsztein D. C., Wyttenbach A., Rankin J. Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts? J Med Genet. 1999 Apr;36(4):265–270. [PMC free article] [PubMed] [Google Scholar]
  22. Sato A., Shimohata T., Koide R., Takano H., Sato T., Oyake M., Igarashi S., Tanaka K., Inuzuka T., Nawa H. Adenovirus-mediated expression of mutant DRPLA proteins with expanded polyglutamine stretches in neuronally differentiated PC12 cells. Preferential intranuclear aggregate formation and apoptosis. Hum Mol Genet. 1999 Jun;8(6):997–1006. doi: 10.1093/hmg/8.6.997. [DOI] [PubMed] [Google Scholar]
  23. Saudou F., Finkbeiner S., Devys D., Greenberg M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell. 1998 Oct 2;95(1):55–66. doi: 10.1016/s0092-8674(00)81782-1. [DOI] [PubMed] [Google Scholar]
  24. Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G. P., Davies S. W., Lehrach H., Wanker E. E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 1997 Aug 8;90(3):549–558. doi: 10.1016/s0092-8674(00)80514-0. [DOI] [PubMed] [Google Scholar]
  25. Skinner P. J., Koshy B. T., Cummings C. J., Klement I. A., Helin K., Servadio A., Zoghbi H. Y., Orr H. T. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature. 1997 Oct 30;389(6654):971–974. doi: 10.1038/40153. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES