Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 15;348(Pt 1):107–112.

pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets.

S Giuriato 1, S Bodin 1, C Erneux 1, R Woscholski 1, M Plantavid 1, H Chap 1, B Payrastre 1
PMCID: PMC1221042  PMID: 10794720

Abstract

SH2-containing inositol-5-phosphatase 1 (SHIP1) was originally identified as a 145 kDa protein that became tyrosine-phosphorylated in response to multiple cytokines. It is now well established that SHIP1 is specifically expressed in haemopoietic cells and is important as a negative regulator of signalling. We found recently that SHIP1 was present in human blood platelets as an Ins(1,3,4, 5)P(4)-phosphatase and a PtdIns(3,4,5)P(3)-5-phosphatase that became tyrosine-phosphorylated and was relocated to the cytoskeleton in an integrin-dependent manner. Here we report biochemical and pharmacological evidence that the tyrosine kinase pp60(c-src) is constitutively associated with SHIP1 and is involved in its tyrosine phosphorylation downstream of integrin engagement in thrombin-activated human platelets. The use of cytochalasin D allowed us to demonstrate that the actin cytoskeleton reorganization induced on thrombin stimulation was not required for its integrin-mediated phosphorylation. Moreover, the integrin-dependent relocation of SHIP1 to the cytoskeleton did not require its tyrosine phosphorylation. These results suggest that SHIP1 is first recruited to the integrin-linked signalling complexes and then becomes tyrosine-phosphorylated through a Src-kinase-dependent mechanism but independently of the actin cytoskeleton reorganization.

Full Text

The Full Text of this article is available as a PDF (216.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cazenave J. P., Hemmendinger S., Beretz A., Sutter-Bay A., Launay J. L'agrégation plaquettaire: outil d'investigation clinique et d'étude pharmacologique. Méthodologie. Ann Biol Clin (Paris) 1983;41(3):167–179. [PubMed] [Google Scholar]
  2. Clark E. A., Brugge J. S. Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol Cell Biol. 1993 Mar;13(3):1863–1871. doi: 10.1128/mcb.13.3.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deuter-Reinhard M., Apell G., Pot D., Klippel A., Williams L. T., Kavanaugh W. M. SIP/SHIP inhibits Xenopus oocyte maturation induced by insulin and phosphatidylinositol 3-kinase. Mol Cell Biol. 1997 May;17(5):2559–2565. doi: 10.1128/mcb.17.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erneux C., Govaerts C., Communi D., Pesesse X. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):185–199. doi: 10.1016/s0005-2760(98)00132-5. [DOI] [PubMed] [Google Scholar]
  5. Ferrell J. E., Jr, Martin G. S. Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2234–2238. doi: 10.1073/pnas.86.7.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fox J. E. The platelet cytoskeleton. Thromb Haemost. 1993 Dec 20;70(6):884–893. [PubMed] [Google Scholar]
  7. Giuriato S., Payrastre B., Drayer A. L., Plantavid M., Woscholski R., Parker P., Erneux C., Chap H. Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem. 1997 Oct 24;272(43):26857–26863. doi: 10.1074/jbc.272.43.26857. [DOI] [PubMed] [Google Scholar]
  8. Golden A., Brugge J. S. Thrombin treatment induces rapid changes in tyrosine phosphorylation in platelets. Proc Natl Acad Sci U S A. 1989 Feb;86(3):901–905. doi: 10.1073/pnas.86.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guinebault C., Payrastre B., Racaud-Sultan C., Mazarguil H., Breton M., Mauco G., Plantavid M., Chap H. Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase. J Cell Biol. 1995 May;129(3):831–842. doi: 10.1083/jcb.129.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanke J. H., Gardner J. P., Dow R. L., Changelian P. S., Brissette W. H., Weringer E. J., Pollok B. A., Connelly P. A. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem. 1996 Jan 12;271(2):695–701. doi: 10.1074/jbc.271.2.695. [DOI] [PubMed] [Google Scholar]
  11. Helgason C. D., Damen J. E., Rosten P., Grewal R., Sorensen P., Chappel S. M., Borowski A., Jirik F., Krystal G., Humphries R. K. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998 Jun 1;12(11):1610–1620. doi: 10.1101/gad.12.11.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huber M., Helgason C. D., Damen J. E., Scheid M., Duronio V., Liu L., Ware M. D., Humphries R. K., Krystal G. The role of SHIP in growth factor induced signalling. Prog Biophys Mol Biol. 1999;71(3-4):423–434. doi: 10.1016/s0079-6107(98)00049-2. [DOI] [PubMed] [Google Scholar]
  13. Huber M., Helgason C. D., Scheid M. P., Duronio V., Humphries R. K., Krystal G. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 1998 Dec 15;17(24):7311–7319. doi: 10.1093/emboj/17.24.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson S. P., Schoenwaelder S. M., Matzaris M., Brown S., Mitchell C. A. Phosphatidylinositol 3,4,5-trisphosphate is a substrate for the 75 kDa inositol polyphosphate 5-phosphatase and a novel 5-phosphatase which forms a complex with the p85/p110 form of phosphoinositide 3-kinase. EMBO J. 1995 Sep 15;14(18):4490–4500. doi: 10.1002/j.1460-2075.1995.tb00128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kovacsovics T. J., Bachelot C., Toker A., Vlahos C. J., Duckworth B., Cantley L. C., Hartwig J. H. Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets but reverses platelet aggregation. J Biol Chem. 1995 May 12;270(19):11358–11366. doi: 10.1074/jbc.270.19.11358. [DOI] [PubMed] [Google Scholar]
  16. Lamkin T. D., Walk S. F., Liu L., Damen J. E., Krystal G., Ravichandran K. S. Shc interaction with Src homology 2 domain containing inositol phosphatase (SHIP) in vivo requires the Shc-phosphotyrosine binding domain and two specific phosphotyrosines on SHIP. J Biol Chem. 1997 Apr 18;272(16):10396–10401. doi: 10.1074/jbc.272.16.10396. [DOI] [PubMed] [Google Scholar]
  17. Levy-Toledano S., Gallet C., Nadal F., Bryckaert M., Maclouf J., Rosa J. P. Phosphorylation and dephosphorylation mechanisms in platelet function: a tightly regulated balance. Thromb Haemost. 1997 Jul;78(1):226–233. [PubMed] [Google Scholar]
  18. Liu L., Damen J. E., Hughes M. R., Babic I., Jirik F. R., Krystal G. The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis. J Biol Chem. 1997 Apr 4;272(14):8983–8988. doi: 10.1074/jbc.272.14.8983. [DOI] [PubMed] [Google Scholar]
  19. Liu L., Damen J. E., Ware M., Hughes M., Krystal G. SHIP, a new player in cytokine-induced signalling. Leukemia. 1997 Feb;11(2):181–184. doi: 10.1038/sj.leu.2400559. [DOI] [PubMed] [Google Scholar]
  20. Liu Q., Sasaki T., Kozieradzki I., Wakeham A., Itie A., Dumont D. J., Penninger J. M. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 1999 Apr 1;13(7):786–791. doi: 10.1101/gad.13.7.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miranti C. K., Leng L., Maschberger P., Brugge J. S., Shattil S. J. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol. 1998 Dec 3;8(24):1289–1299. doi: 10.1016/s0960-9822(07)00559-3. [DOI] [PubMed] [Google Scholar]
  22. Ono M., Bolland S., Tempst P., Ravetch J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature. 1996 Sep 19;383(6597):263–266. doi: 10.1038/383263a0. [DOI] [PubMed] [Google Scholar]
  23. Osborne M. A., Zenner G., Lubinus M., Zhang X., Songyang Z., Cantley L. C., Majerus P., Burn P., Kochan J. P. The inositol 5'-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem. 1996 Nov 15;271(46):29271–29278. doi: 10.1074/jbc.271.46.29271. [DOI] [PubMed] [Google Scholar]
  24. Pumphrey N. J., Taylor V., Freeman S., Douglas M. R., Bradfield P. F., Young S. P., Lord J. M., Wakelam M. J., Bird I. N., Salmon M. Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31. FEBS Lett. 1999 Apr 30;450(1-2):77–83. doi: 10.1016/s0014-5793(99)00446-9. [DOI] [PubMed] [Google Scholar]
  25. Rosa J. P., Artçanuthurry V., Grelac F., Maclouf J., Caen J. P., Lévy-Toledano S. Reassessment of protein tyrosine phosphorylation in thrombasthenic platelets: evidence that phosphorylation of cortactin and a 64-kD protein is dependent on thrombin activation and integrin alphaIIb beta3. Blood. 1997 Jun 15;89(12):4385–4392. [PubMed] [Google Scholar]
  26. Scharenberg A. M., El-Hillal O., Fruman D. A., Beitz L. O., Li Z., Lin S., Gout I., Cantley L. C., Rawlings D. J., Kinet J. P. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998 Apr 1;17(7):1961–1972. doi: 10.1093/emboj/17.7.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schindler T., Sicheri F., Pico A., Gazit A., Levitzki A., Kuriyan J. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol Cell. 1999 May;3(5):639–648. doi: 10.1016/s1097-2765(00)80357-3. [DOI] [PubMed] [Google Scholar]
  28. Shattil S. J., Kashiwagi H., Pampori N. Integrin signaling: the platelet paradigm. Blood. 1998 Apr 15;91(8):2645–2657. [PubMed] [Google Scholar]
  29. Sultan C., Plantavid M., Bachelot C., Grondin P., Breton M., Mauco G., Lévy-Toledano S., Caen J. P., Chap H. Involvement of platelet glycoprotein IIb-IIIa (alpha IIb-beta 3 integrin) in thrombin-induced synthesis of phosphatidylinositol 3',4'-bisphosphate. J Biol Chem. 1991 Dec 15;266(35):23554–23557. [PubMed] [Google Scholar]
  30. Tridandapani S., Kelley T., Cooney D., Pradhan M., Coggeshall K. M. Negative signaling in B cells: SHIP Grbs Shc. Immunol Today. 1997 Sep;18(9):424–427. doi: 10.1016/s0167-5699(97)01112-2. [DOI] [PubMed] [Google Scholar]
  31. Trumel C., Payrastre B., Plantavid M., Hechler B., Viala C., Presek P., Martinson E. A., Cazenave J. P., Chap H., Gachet C. A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood. 1999 Dec 15;94(12):4156–4165. [PubMed] [Google Scholar]
  32. Varon D., Jackson D. E., Shenkman B., Dardik R., Tamarin I., Savion N., Newman P. J. Platelet/endothelial cell adhesion molecule-1 serves as a costimulatory agonist receptor that modulates integrin-dependent adhesion and aggregation of human platelets. Blood. 1998 Jan 15;91(2):500–507. [PubMed] [Google Scholar]
  33. Wisniewski D., Strife A., Swendeman S., Erdjument-Bromage H., Geromanos S., Kavanaugh W. M., Tempst P., Clarkson B. A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood. 1999 Apr 15;93(8):2707–2720. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES