Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 15;348(Pt 1):201–207.

Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution.

G J Davies 1, A M Brzozowski 1, M Dauter 1, A Varrot 1, M Schülein 1
PMCID: PMC1221054  PMID: 10794732

Abstract

Cellulases are traditionally classified as either endoglucanases or cellobiohydrolases on the basis of their respective catalytic activities on crystalline cellulose, which is generally hydrolysed more efficiently only by the cellobiohydrolases. On the basis of the Trichoderma reesei cellobiohydrolase II structure, it was proposed that the active-site tunnel of cellobiohydrolases permitted the processive hydrolysis of cellulose, whereas the corresponding endoglucanases would display open active-site clefts [Rouvinen, Bergfors, Teeri, Knowles and Jones (1990) Science 249, 380-386]. Glycoside hydrolase family 6 contains both cellobiohydrolases and endoglucanases. The structure of the catalytic core of the family 6 endoglucanase Cel6B from Humicola insolens has been solved by molecular replacement with the known T. reesei cellobiohydrolase II as the search model. Strangely, at the sequence level, this enzyme exhibits the highest sequence similarity to family 6 cellobiohydrolases and displays just one of the loop deletions traditionally associated with endoglucanases in this family. However, this enzyme shows no activity on crystalline substrates but a high activity on soluble substrates, which is typical of an endoglucanase. The three-dimensional structure reveals that the deletion of just a single loop of the active site, coupled with the resultant conformational change in a second 'cellobiohydrolase-specific' loop, peels open the active-site tunnel to reveal a substrate-binding groove.

Full Text

The Full Text of this article is available as a PDF (347.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Dalbøge H., Heldt-Hansen H. P. A novel method for efficient expression cloning of fungal enzyme genes. Mol Gen Genet. 1994 May 10;243(3):253–260. doi: 10.1007/BF00301060. [DOI] [PubMed] [Google Scholar]
  3. Damude H. G., Ferro V., Withers S. G., Warren R. A. Substrate specificity of endoglucanase A from Cellulomonas fimi: fundamental differences between endoglucanases and exoglucanases from family 6. Biochem J. 1996 Apr 15;315(Pt 2):467–472. doi: 10.1042/bj3150467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Damude H. G., Withers S. G., Kilburn D. G., Miller R. C., Jr, Warren R. A. Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry. 1995 Feb 21;34(7):2220–2224. doi: 10.1021/bi00007a016. [DOI] [PubMed] [Google Scholar]
  5. Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  7. Denman S., Xue G. P., Patel B. Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol. 1996 Jun;62(6):1889–1896. doi: 10.1128/aem.62.6.1889-1896.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Divne C., Ståhlberg J., Reinikainen T., Ruohonen L., Pettersson G., Knowles J. K., Teeri T. T., Jones T. A. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science. 1994 Jul 22;265(5171):524–528. doi: 10.1126/science.8036495. [DOI] [PubMed] [Google Scholar]
  9. Divne C., Ståhlberg J., Teeri T. T., Jones T. A. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol. 1998 Jan 16;275(2):309–325. doi: 10.1006/jmbi.1997.1437. [DOI] [PubMed] [Google Scholar]
  10. Henrissat B., Teeri T. T., Warren R. A. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 1998 Mar 27;425(2):352–354. doi: 10.1016/s0014-5793(98)00265-8. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. Koivula A., Kinnari T., Harjunpä V., Ruohonen L., Teleman A., Drakenberg T., Rouvinen J., Jones T. A., Teeri T. T. Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett. 1998 Jun 16;429(3):341–346. doi: 10.1016/s0014-5793(98)00596-1. [DOI] [PubMed] [Google Scholar]
  13. Konstantinidis A. K., Marsden I., Sinnott M. L. Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Biochem J. 1993 May 1;291(Pt 3):883–888. doi: 10.1042/bj2910883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  15. Li X. L., Chen H., Ljungdahl L. G. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol. 1997 Dec;63(12):4721–4728. doi: 10.1128/aem.63.12.4721-4728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  17. Meinke A., Damude H. G., Tomme P., Kwan E., Kilburn D. G., Miller R. C., Jr, Warren R. A., Gilkes N. R. Enhancement of the endo-beta-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. J Biol Chem. 1995 Mar 3;270(9):4383–4386. doi: 10.1074/jbc.270.9.4383. [DOI] [PubMed] [Google Scholar]
  18. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  19. RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
  20. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
  21. Spezio M., Wilson D. B., Karplus P. A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry. 1993 Sep 28;32(38):9906–9916. doi: 10.1021/bi00089a006. [DOI] [PubMed] [Google Scholar]
  22. Sulzenbacher G., Driguez H., Henrissat B., Schülein M., Davies G. J. Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry. 1996 Dec 3;35(48):15280–15287. doi: 10.1021/bi961946h. [DOI] [PubMed] [Google Scholar]
  23. Sulzenbacher G., Schülein M., Davies G. J. Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-D-cellobioside-inhibited forms, at 2.3 A resolution. Biochemistry. 1997 May 13;36(19):5902–5911. doi: 10.1021/bi962963+. [DOI] [PubMed] [Google Scholar]
  24. Teeri T. T., Koivula A., Linder M., Wohlfahrt G., Divne C., Jones T. A. Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans. 1998 May;26(2):173–178. doi: 10.1042/bst0260173. [DOI] [PubMed] [Google Scholar]
  25. Varrot A., Hastrup S., Schülein M., Davies G. J. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution. Biochem J. 1999 Jan 15;337(Pt 2):297–304. [PMC free article] [PubMed] [Google Scholar]
  26. Varrot A., Schülein M., Davies G. J. Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding. Biochemistry. 1999 Jul 13;38(28):8884–8891. doi: 10.1021/bi9903998. [DOI] [PubMed] [Google Scholar]
  27. Wolfgang D. E., Wilson D. B. Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry. 1999 Jul 27;38(30):9746–9751. doi: 10.1021/bi990401v. [DOI] [PubMed] [Google Scholar]
  28. Zou J. y., Kleywegt G. J., Ståhlberg J., Driguez H., Nerinckx W., Claeyssens M., Koivula A., Teeri T. T., Jones T. A. Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999 Sep 15;7(9):1035–1045. doi: 10.1016/s0969-2126(99)80171-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES