Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 15;348(Pt 1):223–227.

Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae.

J Chevalier 1, M Malléa 1, J M Pagès 1
PMCID: PMC1221057  PMID: 10794735

Abstract

In Enterobacteriaceae, the permeability of the outer membrane to hydrophilic antibiotics is associated with the presence of pore-forming proteins. We tested the diffusion of the fluoroquinolone norfloxacin in four Enterobacter cloacae strains: a clinical isolate and three derivatives variously producing or lacking the D and F porins. We analysed the entry of norfloxacin into E. cloacae cells in the presence of either the polyamine spermine or the recently developed cefepime, which are known to penetrate through the Escherichia coli OmpF porin. Uptake of the fluoroquinolone was decreased in both cases; the initial rate of penetration decreased as more spermine blocked the channel. Our results indicate that, like beta-lactam molecules, fluoroquinolones translocate through the outer membrane via the F porin and that cefepime and norfloxacin entries are polyamine-sensitive. This suggests that the closure of the F porin channel by polyamines might modulate the susceptibility of E. cloacae to both fluoroquinolone and cephalosporin antibiotics.

Full Text

The Full Text of this article is available as a PDF (119.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedard J., Bryan L. E. Interaction of the fluoroquinolone antimicrobial agents ciprofloxacin and enoxacin with liposomes. Antimicrob Agents Chemother. 1989 Aug;33(8):1379–1382. doi: 10.1128/aac.33.8.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedard J., Wong S., Bryan L. E. Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrob Agents Chemother. 1987 Sep;31(9):1348–1354. doi: 10.1128/aac.31.9.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chapman J. S., Georgopapadakou N. H. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988 Apr;32(4):438–442. doi: 10.1128/aac.32.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chevalier J., Pagès J. M., Malléa M. In vivo modification of porin activity conferring antibiotic resistance to Enterobacter aerogenes. Biochem Biophys Res Commun. 1999 Dec 9;266(1):248–251. doi: 10.1006/bbrc.1999.1795. [DOI] [PubMed] [Google Scholar]
  5. Cohen S. P., Hooper D. C., Wolfson J. S., Souza K. S., McMurry L. M., Levy S. B. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother. 1988 Aug;32(8):1187–1191. doi: 10.1128/aac.32.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  7. Deguchi T., Yasuda M., Nakano M., Ozeki S., Kanematsu E., Nishino Y., Ishihara S., Kawada Y. Detection of mutations in the gyrA and parC genes in quinolone-resistant clinical isolates of Enterobacter cloacae. J Antimicrob Chemother. 1997 Oct;40(4):543–549. doi: 10.1093/jac/40.4.543. [DOI] [PubMed] [Google Scholar]
  8. Dela Vega A. L., Delcour A. H. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol. 1996 Jul;178(13):3715–3721. doi: 10.1128/jb.178.13.3715-3721.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denis A., Moreau N. J. Mechanisms of quinolone resistance in clinical isolates: accumulation of sparfloxacin and of fluoroquinolones of various hydrophobicity, and analysis of membrane composition. J Antimicrob Chemother. 1993 Sep;32(3):379–392. doi: 10.1093/jac/32.3.379. [DOI] [PubMed] [Google Scholar]
  10. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):535–538. doi: 10.1128/aac.29.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iyer R., Delcour A. H. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem. 1997 Jul 25;272(30):18595–18601. doi: 10.1074/jbc.272.30.18595. [DOI] [PubMed] [Google Scholar]
  12. Kaneko M., Yamaguchi A., Sawai T. Purification and characterization of two kinds of porins from the Enterobacter cloacae outer membrane. J Bacteriol. 1984 Jun;158(3):1179–1181. doi: 10.1128/jb.158.3.1179-1181.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
  14. Lee E. H., Collatz E., Trias J., Gutmann L. Diffusion of beta-lactam antibiotics into proteoliposomes reconstituted with outer membranes of isogenic imipenem-susceptible and -resistant strains of Enterobacter cloacae. J Gen Microbiol. 1992 Nov;138(11):2347–2351. doi: 10.1099/00221287-138-11-2347. [DOI] [PubMed] [Google Scholar]
  15. Liu N., Benedik M. J., Delcour A. H. Disruption of polyamine modulation by a single amino acid substitution on the L3 loop of the OmpC porin channel. Biochim Biophys Acta. 1997 Jun 12;1326(2):201–212. doi: 10.1016/s0005-2736(97)00024-2. [DOI] [PubMed] [Google Scholar]
  16. Lucain C., Regamey P., Bellido F., Pechére J. C. Resistance emerging after pefloxacin therapy of experimental Enterobacter cloacae peritonitis. Antimicrob Agents Chemother. 1989 Jun;33(6):937–943. doi: 10.1128/aac.33.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mallea M., Chevalier J., Bornet C., Eyraud A., Davin-Regli A., Bollet C., Pagès J. M. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology. 1998 Nov;144(Pt 11):3003–3009. doi: 10.1099/00221287-144-11-3003. [DOI] [PubMed] [Google Scholar]
  18. Malléa M., Simonet V., Lee E. H., Gervier R., Collatz E., Gutmann L., Pagès J. M. Biological and immunological comparisons of Enterobacter cloacae and Escherichia coli porins. FEMS Microbiol Lett. 1995 Jun 15;129(2-3):273–279. doi: 10.1111/j.1574-6968.1995.tb07592.x. [DOI] [PubMed] [Google Scholar]
  19. Meng S. Y., Bennett G. N. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol. 1992 Apr;174(8):2659–2669. doi: 10.1128/jb.174.8.2659-2669.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mortimer P. G., Piddock L. J. The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J Antimicrob Chemother. 1993 Aug;32(2):195–213. doi: 10.1093/jac/32.2.195. [DOI] [PubMed] [Google Scholar]
  21. Nikaido H., Liu W., Rosenberg E. Y. Outer membrane permeability and beta-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother. 1990 Feb;34(2):337–342. doi: 10.1128/aac.34.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raimondi A., Traverso A., Nikaido H. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother. 1991 Jun;35(6):1174–1180. doi: 10.1128/aac.35.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Samartzidou H., Delcour A. H. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol. 1999 Feb;181(3):791–798. doi: 10.1128/jb.181.3.791-798.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simonet V., Malléa M., Pagès J. M. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother. 2000 Feb;44(2):311–315. doi: 10.1128/aac.44.2.311-315.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabor C. W., Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985 Mar;49(1):81–99. doi: 10.1128/mr.49.1.81-99.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Gelder P., Saint N., Phale P., Eppens E. F., Prilipov A., van Boxtel R., Rosenbusch J. P., Tommassen J. Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli: role of charged residues. J Mol Biol. 1997 Jun 20;269(4):468–472. doi: 10.1006/jmbi.1997.1063. [DOI] [PubMed] [Google Scholar]
  27. Van Gelder P., Saint N., van Boxtel R., Rosenbusch J. P., Tommassen J. Pore functioning of outer membrane protein PhoE of Escherichia coli: mutagenesis of the constriction loop L3. Protein Eng. 1997 Jun;10(6):699–706. doi: 10.1093/protein/10.6.699. [DOI] [PubMed] [Google Scholar]
  28. Yoshimura F., Nikaido H. Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother. 1985 Jan;27(1):84–92. doi: 10.1128/aac.27.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES