Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 1;348(Pt 2):257–261.

Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells.

C Lobo 1, M A Ruiz-Bellido 1, J C Aledo 1, J Márquez 1, I Núñez De Castro 1, F J Alonso 1
PMCID: PMC1221061  PMID: 10816417

Abstract

Phosphate-activated glutaminase has a critical role in tumours and rapidly dividing cells and its activity is correlated with malignancy. Ehrlich ascites tumour cells transfected with the pcDNA3 vector containing an antisense segment (0.28 kb) of rat kidney glutaminase showed impairment in the growth rate and plating efficiency, as well as a shortage in the glutaminase protein and activity. The C-terminal segment used is well conserved in all glutaminase sequences known. The transfected cells, named 0.28AS-2, displayed remarkable changes in their morphology compared with the parental cell line. The 0.28AS-2 cells also lost their tumourigenic capacity in vivo. Control mice developed an ascitic tumour, with a lifespan of 16+/-1 days, when inoculated with 10(7) cells/mouse; on the contrary, animals inoculated with transfected cells up to 2.5 times the cell numbers of control mice did not develop tumours and behaved as healthy animals. The ability to revert the transformed phenotype of antisense-transfected cells confirms the relevance of glutaminase in the transformation process and could provide new ways for the study of gene therapy.

Full Text

The Full Text of this article is available as a PDF (147.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aledo J. C., Gómez-Biedma S., Segura J. A., Molina M., Núez de Castro I., Márquez J. Native polyacrylamide gel electrophoresis of membrane proteins: glutaminase detection after in situ specific activity staining. Electrophoresis. 1993 Jan-Feb;14(1-2):88–93. doi: 10.1002/elps.1150140116. [DOI] [PubMed] [Google Scholar]
  2. Aledo J. C., Segura J. A., Medina M. A., Alonso F. J., Núez de Castro I., Márquez J. Phosphate-activated glutaminase expression during tumor development. FEBS Lett. 1994 Mar 14;341(1):39–42. doi: 10.1016/0014-5793(94)80236-x. [DOI] [PubMed] [Google Scholar]
  3. Aledo J. C., de Pedro E., Gómez-Fabre P. M., Núez de Castro I., Márquez J. Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase. Biochim Biophys Acta. 1997 Jan 31;1323(2):173–184. doi: 10.1016/s0005-2736(96)00189-7. [DOI] [PubMed] [Google Scholar]
  4. Carrascosa J. M., Martínez P., Núez de Castro I. Nitrogen movement between host and tumor in mice inoculated with Ehrlich ascitic tumor cells. Cancer Res. 1984 Sep;44(9):3831–3835. [PubMed] [Google Scholar]
  5. Chance W. T., Cao L., Kim M. W., Nelson J. L., Fischer J. E. Reduction of tumor growth following treatment with a glutamine antimetabolite. Life Sci. 1988;42(1):87–94. doi: 10.1016/0024-3205(88)90627-3. [DOI] [PubMed] [Google Scholar]
  6. Chung-Bok M. I., Vincent N., Jhala U., Watford M. Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter. Biochem J. 1997 May 15;324(Pt 1):193–200. doi: 10.1042/bj3240193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crabtree B., Newsholme E. A. A quantitative approach to metabolic control. Curr Top Cell Regul. 1985;25:21–76. doi: 10.1016/b978-0-12-152825-6.50006-0. [DOI] [PubMed] [Google Scholar]
  8. Earhart R. H., Amato D. J., Chang A. Y., Borden E. C., Shiraki M., Dowd M. E., Comis R. L., Davis T. E., Smith T. J. Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Invest New Drugs. 1990 Feb;8(1):113–119. doi: 10.1007/BF00216936. [DOI] [PubMed] [Google Scholar]
  9. Gallagher M. P., Marshall R. D., Wilson R. Asparaginase as a drug for treatment of acute lymphoblastic leukaemia. Essays Biochem. 1989;24:1–40. [PubMed] [Google Scholar]
  10. Greider C. W. Telomere length regulation. Annu Rev Biochem. 1996;65:337–365. doi: 10.1146/annurev.bi.65.070196.002005. [DOI] [PubMed] [Google Scholar]
  11. Gómez-Fabre P. M., Aledo J. C., Del Castillo-Olivares A., Alonso F. J., Núez De Castro I., Campos J. A., Márquez J. Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem J. 2000 Jan 15;345(Pt 2):365–375. [PMC free article] [PubMed] [Google Scholar]
  12. Matsuno T., Hirai H. Glutamine synthetase and glutaminase activities in various hepatoma cells. Biochem Int. 1989 Aug;19(2):219–225. [PubMed] [Google Scholar]
  13. McKeehan W. L. Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep. 1982 Jul;6(7):635–650. doi: 10.1016/0309-1651(82)90125-4. [DOI] [PubMed] [Google Scholar]
  14. Medina M. A., Quesada A. R., Núez de Castro I. L-glutamine transport in native vesicles isolated from Ehrlich ascites tumor cell membranes. J Bioenerg Biomembr. 1991 Aug;23(4):689–697. doi: 10.1007/BF00785818. [DOI] [PubMed] [Google Scholar]
  15. Medina M. A., Sánchez-Jiménez F., Márquez J., Rodríguez Quesada A., Núez de Castro I. Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem. 1992 Jul 6;113(1):1–15. doi: 10.1007/BF00230880. [DOI] [PubMed] [Google Scholar]
  16. Molina M., Segura J. A., Aledo J. C., Medina M. A., Núnez de Castro I., Márquez J. Glutamine transport by vesicles isolated from tumour-cell mitochondrial inner membrane. Biochem J. 1995 Jun 1;308(Pt 2):629–633. doi: 10.1042/bj3080629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  18. Prajda N. Enzyme targets of antiglutamine agents in cancer chemotherapy. Adv Enzyme Regul. 1985;24:207–223. doi: 10.1016/0065-2571(85)90077-9. [DOI] [PubMed] [Google Scholar]
  19. Quesada A. R., Medina M. A., Márquez J., Sánchez-Jiménez F. M., Núez de Castro I. Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res. 1988 Mar 15;48(6):1551–1553. [PubMed] [Google Scholar]
  20. Segura J. A., Aledo J. C., Gómez-Biedma S., Núez de Castro I., Márquez J. Tumor glutaminase purification. Protein Expr Purif. 1995 Jun;6(3):343–351. doi: 10.1006/prep.1995.1045. [DOI] [PubMed] [Google Scholar]
  21. Shapiro R. A., Farrell L., Srinivasan M., Curthoys N. P. Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem. 1991 Oct 5;266(28):18792–18796. [PubMed] [Google Scholar]
  22. Souba W. W. Glutamine and cancer. Ann Surg. 1993 Dec;218(6):715–728. doi: 10.1097/00000658-199312000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spittler A., Oehler R., Goetzinger P., Holzer S., Reissner C. M., Leutmezer F., Rath V., Wrba F., Fuegger R., Boltz-Nitulescu G. Low glutamine concentrations induce phenotypical and functional differentiation of U937 myelomonocytic cells. J Nutr. 1997 Nov;127(11):2151–2157. doi: 10.1093/jn/127.11.2151. [DOI] [PubMed] [Google Scholar]
  24. Watford M. Hepatic glutaminase expression: relationship to kidney-type glutaminase and to the urea cycle. FASEB J. 1993 Dec;7(15):1468–1474. doi: 10.1096/fasebj.7.15.8262331. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES