Abstract
The effects of Rho-specific modifying toxins on the tyrosine phosphorylation of endothelial cell proteins were investigated. Incubation of the cells with the Rho-activating toxin cytotoxic necrotizing factor 1 (CNF1) induced a marked increase in the tyrosine phosphorylation of a number of signalling intermediates of the vascular endothelial growth factor (VEGF)-mediated cascade, including focal adhesion kinase, paxillin, phospholipase Cgamma1 and a Shc-associated protein of 195 kDa. Both CNF1- and VEGF-dependent tyrosine phosphorylation of these proteins were significantly reduced by prior incubation with C3 transferase, a known inhibitor of RhoA function, suggesting a Rho-dependent mechanism. The stimulation of endothelial cells with CNF1 resulted in a marked increase in the tyrosine phosphorylation of the VEGF receptor (VEGFR)-2, which was correlated with a stimulation of its kinase activity and with its association with downstream tyrosine phosphorylated proteins. The stimulatory effect of CNF1 was specific for VEGFR-2 since the phosphotyrosine content of VEGFR-1 was not affected by the toxin. Transient overexpression of a dominant-active RhoA mutant also induced an increase in the tyrosine phosphorylation of the VEGFR-2, whereas overexpression of a dominant-inactive form of the protein was without effect. Taken together, these results indicate that Rho proteins may play an important role in angiogenesis by modulating the tyrosine phosphorylation levels of VEGFR-2.
Full Text
The Full Text of this article is available as a PDF (230.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abedi H., Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem. 1997 Jun 13;272(24):15442–15451. doi: 10.1074/jbc.272.24.15442. [DOI] [PubMed] [Google Scholar]
- Aktories K. Bacterial toxins that target Rho proteins. J Clin Invest. 1997 Mar 1;99(5):827–829. doi: 10.1172/JCI119245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter R. M., Secrist J. P., Vaillancourt R. R., Kazlauskas A. Full activation of the platelet-derived growth factor beta-receptor kinase involves multiple events. J Biol Chem. 1998 Jul 3;273(27):17050–17055. doi: 10.1074/jbc.273.27.17050. [DOI] [PubMed] [Google Scholar]
- Boehm T., Folkman J., Browder T., O'Reilly M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997 Nov 27;390(6658):404–407. doi: 10.1038/37126. [DOI] [PubMed] [Google Scholar]
- Defilippi P., Venturino M., Gulino D., Duperray A., Boquet P., Fiorentini C., Volpe G., Palmieri M., Silengo L., Tarone G. Dissection of pathways implicated in integrin-mediated actin cytoskeleton assembly. Involvement of protein kinase C, Rho GTPase, and tyrosine phosphorylation. J Biol Chem. 1997 Aug 29;272(35):21726–21734. doi: 10.1074/jbc.272.35.21726. [DOI] [PubMed] [Google Scholar]
- Edgell C. J., Curiel D. T., Hu P. C., Marr H. S. Efficient gene transfer to human endothelial cells using DNA complexed to adenovirus particles. Biotechniques. 1998 Aug;25(2):264-8, 270-2. doi: 10.2144/98252gt01. [DOI] [PubMed] [Google Scholar]
- Fiorentini C., Fabbri A., Flatau G., Donelli G., Matarrese P., Lemichez E., Falzano L., Boquet P. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J Biol Chem. 1997 Aug 1;272(31):19532–19537. doi: 10.1074/jbc.272.31.19532. [DOI] [PubMed] [Google Scholar]
- Fiorentini C., Gauthier M., Donelli G., Boquet P. Bacterial toxins and the Rho GTP-binding protein: what microbes teach us about cell regulation. Cell Death Differ. 1998 Sep;5(9):720–728. doi: 10.1038/sj.cdd.4400412. [DOI] [PubMed] [Google Scholar]
- Flatau G., Lemichez E., Gauthier M., Chardin P., Paris S., Fiorentini C., Boquet P. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature. 1997 Jun 12;387(6634):729–733. doi: 10.1038/42743. [DOI] [PubMed] [Google Scholar]
- Fuh G., Li B., Crowley C., Cunningham B., Wells J. A. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem. 1998 May 1;273(18):11197–11204. doi: 10.1074/jbc.273.18.11197. [DOI] [PubMed] [Google Scholar]
- Guo D., Jia Q., Song H. Y., Warren R. S., Donner D. B. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem. 1995 Mar 24;270(12):6729–6733. doi: 10.1074/jbc.270.12.6729. [DOI] [PubMed] [Google Scholar]
- Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
- Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/s0092-8674(00)80108-7. [DOI] [PubMed] [Google Scholar]
- Holmgren L., O'Reilly M. S., Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995 Feb;1(2):149–153. doi: 10.1038/nm0295-149. [DOI] [PubMed] [Google Scholar]
- Kendall R. L., Rutledge R. Z., Mao X., Tebben A. J., Hungate R. W., Thomas K. A. Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J Biol Chem. 1999 Mar 5;274(10):6453–6460. doi: 10.1074/jbc.274.10.6453. [DOI] [PubMed] [Google Scholar]
- Klemm J. D., Schreiber S. L., Crabtree G. R. Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol. 1998;16:569–592. doi: 10.1146/annurev.immunol.16.1.569. [DOI] [PubMed] [Google Scholar]
- Kroll J., Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem. 1997 Dec 19;272(51):32521–32527. doi: 10.1074/jbc.272.51.32521. [DOI] [PubMed] [Google Scholar]
- Lacerda H. M., Pullinger G. D., Lax A. J., Rozengurt E. Cytotoxic necrotizing factor 1 from Escherichia coli and dermonecrotic toxin from Bordetella bronchiseptica induce p21(rho)-dependent tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 cells. J Biol Chem. 1997 Apr 4;272(14):9587–9596. doi: 10.1074/jbc.272.14.9587. [DOI] [PubMed] [Google Scholar]
- Levy A. P., Levy N. S., Goldberg M. A. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996 Feb 2;271(5):2746–2753. doi: 10.1074/jbc.271.5.2746. [DOI] [PubMed] [Google Scholar]
- Mackay D. J., Hall A. Rho GTPases. J Biol Chem. 1998 Aug 14;273(33):20685–20688. doi: 10.1074/jbc.273.33.20685. [DOI] [PubMed] [Google Scholar]
- McGuire T. F., Qian Y., Vogt A., Hamilton A. D., Sebti S. M. Platelet-derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation but not farnesylation. J Biol Chem. 1996 Nov 1;271(44):27402–27407. doi: 10.1074/jbc.271.44.27402. [DOI] [PubMed] [Google Scholar]
- Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999 Jan;13(1):9–22. [PubMed] [Google Scholar]
- Omura T., Heldin C. H., Ostman A. Immunoglobulin-like domain 4-mediated receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem. 1997 May 9;272(19):12676–12682. doi: 10.1074/jbc.272.19.12676. [DOI] [PubMed] [Google Scholar]
- Rak J. W., St Croix B. D., Kerbel R. S. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs. 1995 Feb;6(1):3–18. doi: 10.1097/00001813-199502000-00001. [DOI] [PubMed] [Google Scholar]
- Rittinger K., Walker P. A., Eccleston J. F., Nurmahomed K., Owen D., Laue E., Gamblin S. J., Smerdon S. J. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature. 1997 Aug 14;388(6643):693–697. doi: 10.1038/41805. [DOI] [PubMed] [Google Scholar]
- Schmidt G., Sehr P., Wilm M., Selzer J., Mann M., Aktories K. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature. 1997 Jun 12;387(6634):725–729. doi: 10.1038/42735. [DOI] [PubMed] [Google Scholar]
- Strawn L. M., McMahon G., App H., Schreck R., Kuchler W. R., Longhi M. P., Hui T. H., Tang C., Levitzki A., Gazit A. Flk-1 as a target for tumor growth inhibition. Cancer Res. 1996 Aug 1;56(15):3540–3545. [PubMed] [Google Scholar]
- Thomas K. A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem. 1996 Jan 12;271(2):603–606. doi: 10.1074/jbc.271.2.603. [DOI] [PubMed] [Google Scholar]
- Udagawa T., McIntyre B. W. ADP-ribosylation of the G protein Rho inhibits integrin regulation of tumor cell growth. J Biol Chem. 1996 May 24;271(21):12542–12548. doi: 10.1074/jbc.271.21.12542. [DOI] [PubMed] [Google Scholar]
- Waltenberger J., Claesson-Welsh L., Siegbahn A., Shibuya M., Heldin C. H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994 Oct 28;269(43):26988–26995. [PubMed] [Google Scholar]
- Xia P., Aiello L. P., Ishii H., Jiang Z. Y., Park D. J., Robinson G. S., Takagi H., Newsome W. P., Jirousek M. R., King G. L. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest. 1996 Nov 1;98(9):2018–2026. doi: 10.1172/JCI119006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zubiaur M., Sancho J., Terhorst C., Faller D. V. A small GTP-binding protein, Rho, associates with the platelet-derived growth factor type-beta receptor upon ligand binding. J Biol Chem. 1995 Jul 21;270(29):17221–17228. doi: 10.1074/jbc.270.29.17221. [DOI] [PubMed] [Google Scholar]