Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 1;348(Pt 2):321–328.

Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide.

A N Hiner 1, J N Rodríguez-López 1, M B Arnao 1, E Lloyd Raven 1, F García-Cánovas 1, M Acosta 1
PMCID: PMC1221069  PMID: 10816425

Abstract

The activity of ascorbate peroxidase (APX) has been studied with H(2)O(2) and various reducing substrates. The activity decreased in the order pyrogallol>ascorbate>guaiacol>2, 2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The inactivation of APX with H(2)O(2) as the sole substrate was studied. The number of H(2)O(2) molecules required for maximal inactivation of the enzyme was determined as approx. 2.5. Enzymic activity of approx. 20% of the original remained at the end of the inactivation process (i.e. approx. 20% resistance) when ascorbate or ABTS was used as the substrate in activity assays. With pyrogallol or guaiacol no resistance was seen. Inactivation by H(2)O(2) followed over time with ascorbate or pyrogallol assays exhibited single-exponential decreases in enzymic activity. Hyperbolic saturation kinetics were observed in both assay systems; a similar dissociation constant (0.8 microM) for H(2)O(2) was obtained in each case. However, the maximum rate constant (lambda(max)) obtained from the plots differed depending on the assay substrate. The presence of reducing substrate in addition to H(2)O(2) partly or completely protected the enzyme from inactivation, depending on how many molar equivalents of reducing substrate were added. An oxygen electrode system has been used to confirm that APX does not exhibit a catalase-like oxygen-releasing reaction. A kinetic model was developed to interpret the experimental results; both the results and the model are compared and contrasted with previously obtained results for horseradish peroxidase C. The kinetic model has led us to the conclusion that the inactivation of APX by H(2)O(2) represents an unusual situation in which no enzyme turnover occurs but there is a partition of the enzyme between two forms, one inactive and the other with activity towards reducing substrates such as ascorbate and ABTS only. The partition ratio is less than 1.

Full Text

The Full Text of this article is available as a PDF (170.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnao M. B., Acosta M., del Río J. A., García-Cánovas F. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim Biophys Acta. 1990 Mar 29;1038(1):85–89. doi: 10.1016/0167-4838(90)90014-7. [DOI] [PubMed] [Google Scholar]
  2. Arnao M. B., Acosta M., del Río J. A., Varón R., García-Cánovas F. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim Biophys Acta. 1990 Oct 18;1041(1):43–47. doi: 10.1016/0167-4838(90)90120-5. [DOI] [PubMed] [Google Scholar]
  3. Arnao M. B., García-Cánovas F., Acosta M. Role of the reductant substrates on the inactivation of horseradish peroxidase by m-chloroperoxybenzoic acid. Biochem Mol Biol Int. 1996 May;39(1):97–107. doi: 10.1080/15216549600201101. [DOI] [PubMed] [Google Scholar]
  4. Chamulitrat W., Takahashi N., Mason R. P. Peroxyl, alkoxyl, and carbon-centered radical formation from organic hydroperoxides by chloroperoxidase. J Biol Chem. 1989 May 15;264(14):7889–7899. [PubMed] [Google Scholar]
  5. Converso D. A., Fernández M. E. Evidence for an unusual electronic structure of wheat germ peroxidase compound I. Arch Biochem Biophys. 1998 Sep 1;357(1):22–26. doi: 10.1006/abbi.1998.0763. [DOI] [PubMed] [Google Scholar]
  6. Davies D. M., Jones P., Mantle D. The kinetics of formation of horseradish peroxidase compound I by reaction with peroxobenzoic acids. pH and peroxo acid substituent effects. Biochem J. 1976 Jul 1;157(1):247–253. doi: 10.1042/bj1570247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dolphin D., Forman A., Borg D. C., Fajer J., Felton R. H. Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci U S A. 1971 Mar;68(3):614–618. doi: 10.1073/pnas.68.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erman J. E., Vitello L. B., Mauro J. M., Kraut J. Detection of an oxyferryl porphyrin pi-cation-radical intermediate in the reaction between hydrogen peroxide and a mutant yeast cytochrome c peroxidase. Evidence for tryptophan-191 involvement in the radical site of compound I. Biochemistry. 1989 Oct 3;28(20):7992–7995. doi: 10.1021/bi00446a004. [DOI] [PubMed] [Google Scholar]
  9. Garcia-Canovas F., Tudela J., Varon R., Vazquez A. M. Experimental methods for kinetic study of suicide substrates. J Enzyme Inhib. 1989;3(2):81–90. doi: 10.3109/14756368909030367. [DOI] [PubMed] [Google Scholar]
  10. Goodin D. B., Mauk A. G., Smith M. The peroxide complex of yeast cytochrome c peroxidase contains two distinct radical species, neither of which resides at methionine 172 or tryptophan 51. J Biol Chem. 1987 Jun 5;262(16):7719–7724. [PubMed] [Google Scholar]
  11. Hiner A. N., Hernández-Ruíz J., García-Cánovas F., Smith A. T., Arnao M. B., Acosta M. A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. Eur J Biochem. 1995 Dec 1;234(2):506–512. doi: 10.1111/j.1432-1033.1995.506_b.x. [DOI] [PubMed] [Google Scholar]
  12. Jespersen H. M., Kjaersgård I. V., Ostergaard L., Welinder K. G. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J. 1997 Sep 1;326(Pt 2):305–310. doi: 10.1042/bj3260305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mandelman D., Jamal J., Poulos T. L. Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography. Biochemistry. 1998 Dec 15;37(50):17610–17617. doi: 10.1021/bi981958y. [DOI] [PubMed] [Google Scholar]
  14. Marquez L. A., Quitoriano M., Zilinskas B. A., Dunford H. B. Kinetic and spectral properties of pea cytosolic ascorbate peroxidase. FEBS Lett. 1996 Jul 1;389(2):153–156. doi: 10.1016/0014-5793(96)00562-5. [DOI] [PubMed] [Google Scholar]
  15. Mauro J. M., Fishel L. A., Hazzard J. T., Meyer T. E., Tollin G., Cusanovich M. A., Kraut J. Tryptophan-191----phenylalanine, a proximal-side mutation in yeast cytochrome c peroxidase that strongly affects the kinetics of ferrocytochrome c oxidation. Biochemistry. 1988 Aug 23;27(17):6243–6256. doi: 10.1021/bi00417a008. [DOI] [PubMed] [Google Scholar]
  16. Mittler R., Feng X., Cohen M. Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell. 1998 Mar;10(3):461–473. doi: 10.1105/tpc.10.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mittler R., Zilinskas B. A. Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett. 1991 Sep 9;289(2):257–259. doi: 10.1016/0014-5793(91)81083-k. [DOI] [PubMed] [Google Scholar]
  18. Mittler R., Zilinskas B. A. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 1991 Nov;97(3):962–968. doi: 10.1104/pp.97.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mizuno M., Kamei M., Tsuchida H. Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. Biochem Mol Biol Int. 1998 Apr;44(4):717–726. doi: 10.1080/15216549800201762. [DOI] [PubMed] [Google Scholar]
  20. Patterson W. R., Poulos T. L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry. 1995 Apr 4;34(13):4331–4341. doi: 10.1021/bi00013a023. [DOI] [PubMed] [Google Scholar]
  21. Patterson W. R., Poulos T. L., Goodin D. B. Identification of a porphyrin pi cation radical in ascorbate peroxidase compound I. Biochemistry. 1995 Apr 4;34(13):4342–4345. doi: 10.1021/bi00013a024. [DOI] [PubMed] [Google Scholar]
  22. Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers . Plant Physiol. 1999 Mar;119(3):849–858. doi: 10.1104/pp.119.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rodriguez-Lopez J. N., Hernández-Ruiz J., Garcia-Cánovas F., Thorneley R. N., Acosta M., Arnao M. B. The inactivation and catalytic pathways of horseradish peroxidase with m-chloroperoxybenzoic acid. A spectrophotometric and transient kinetic study. J Biol Chem. 1997 Feb 28;272(9):5469–5476. doi: 10.1074/jbc.272.9.5469. [DOI] [PubMed] [Google Scholar]
  24. Shikanai T., Takeda T., Yamauchi H., Sano S., Tomizawa K. I., Yokota A., Shigeoka S. Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett. 1998 May 22;428(1-2):47–51. doi: 10.1016/s0014-5793(98)00483-9. [DOI] [PubMed] [Google Scholar]
  25. Silverman R. B. Mechanism-based enzyme inactivators. Methods Enzymol. 1995;249:240–283. doi: 10.1016/0076-6879(95)49038-8. [DOI] [PubMed] [Google Scholar]
  26. Tudela J., García Cánovas F., Varón R., García Carmona F., Gálvez J., Lozano J. A. Transient-phase kinetics of enzyme inactivation induced by suicide substrates. Biochim Biophys Acta. 1987 Apr 30;912(3):408–416. doi: 10.1016/0167-4838(87)90046-x. [DOI] [PubMed] [Google Scholar]
  27. Welinder K. G. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta. 1991 Nov 15;1080(3):215–220. doi: 10.1016/0167-4838(91)90004-j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES