Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 1;348(Pt 2):343–350.

Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites.

E Doran 1, A P Halestrap 1
PMCID: PMC1221072  PMID: 10816428

Abstract

Percoll-purified rat liver mitochondria were shown to contain BAX dimer and rapidly (<2 min) release 5-10% of their cytochrome c when incubated in a standard KCl incubation medium under energized conditions. This release was not accompanied by release of adenylate kinase (AK), another intermembrane protein, and was not inhibited by Mg(2+), dATP, inhibitors of the permeability transition or ligands of the peripheral benzodiazepine receptor. However, release was greatly reduced by the presence of 5% (w/v) dextran (40 kDa), which caused a decrease in the light scattering (A(520)) of mitochondrial suspensions. Dextran also inhibited both mitochondrial oxidation of exogenous ferrocytochrome c in the presence of rotenone and antimycin, and respiratory-chain-driven reduction of exogenous ferricytochrome c. Hypo-osmotic medium or digitonin treatment of mitochondria caused a large additional release of both cytochrome c and AK that was not blocked by dextran. Polyaspartate, which stabilizes the low conductance state of the voltage-dependent anion channel (VDAC), increased cytochrome c release. VDAC and BAX are both found at the contact sites between the inner and outer membranes and dextran is known to stabilize these contact sites in isolated mitochondria. Thus our data suggest that regulation of a specific permeability pathway for cytochrome c may be mediated by changes in protein-protein interactions within contact sites. The adenine nucleotide translocase is known to bind to VDAC and thus provides an additional link between the specific cytochrome c release pathway and the permeability transition.

Full Text

The Full Text of this article is available as a PDF (237.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alder G. M., Arnold W. M., Bashford C. L., Drake A. F., Pasternak C. A., Zimmermann U. Divalent cation-sensitive pores formed by natural and synthetic melittin and by Triton X-100. Biochim Biophys Acta. 1991 Jan 9;1061(1):111–120. doi: 10.1016/0005-2736(91)90275-d. [DOI] [PubMed] [Google Scholar]
  2. Antonsson B., Montessuit S., Lauper S., Eskes R., Martinou J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000 Jan 15;345(Pt 2):271–278. [PMC free article] [PubMed] [Google Scholar]
  3. Bakker A., Bernaert I., De Bie M., Ravingerova T., Ziegelhöffer A., Van Belle H., Jacob W. The effect of calcium on mitochondrial contact sites: a study on isolated rat hearts. Biochim Biophys Acta. 1994 Dec 30;1224(3):583–588. doi: 10.1016/0167-4889(94)90297-6. [DOI] [PubMed] [Google Scholar]
  4. Beutner G., Rück A., Riede B., Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998 Jan 5;1368(1):7–18. doi: 10.1016/s0005-2736(97)00175-2. [DOI] [PubMed] [Google Scholar]
  5. Báthori G., Fonyó A., Ligeti E. Trace amounts of Triton X-100 modify the inhibitor sensitivity of the mitochondrial porin. Biochim Biophys Acta. 1995 Mar 22;1234(2):249–254. doi: 10.1016/0005-2736(94)00295-z. [DOI] [PubMed] [Google Scholar]
  6. Bücheler K., Adams V., Brdiczka D. Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze-fractured isolated liver mitochondria. Biochim Biophys Acta. 1991 Feb 8;1056(3):233–242. doi: 10.1016/s0005-2728(05)80054-4. [DOI] [PubMed] [Google Scholar]
  7. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999 Jul 15;341(Pt 2):233–249. [PMC free article] [PubMed] [Google Scholar]
  8. Crompton M., Virji S., Ward J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998 Dec 1;258(2):729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. [DOI] [PubMed] [Google Scholar]
  9. Desagher S., Osen-Sand A., Nichols A., Eskes R., Montessuit S., Lauper S., Maundrell K., Antonsson B., Martinou J. C. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999 Mar 8;144(5):891–901. doi: 10.1083/jcb.144.5.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eskes R., Antonsson B., Osen-Sand A., Montessuit S., Richter C., Sadoul R., Mazzei G., Nichols A., Martinou J. C. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol. 1998 Oct 5;143(1):217–224. doi: 10.1083/jcb.143.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finucane D. M., Bossy-Wetzel E., Waterhouse N. J., Cotter T. G., Green D. R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 1999 Jan 22;274(4):2225–2233. doi: 10.1074/jbc.274.4.2225. [DOI] [PubMed] [Google Scholar]
  12. Green D. R., Reed J. C. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
  13. Greenawalt J. W. Survey and update of outer and inner mitochondrial membrane separation. Methods Enzymol. 1979;55:88–98. doi: 10.1016/0076-6879(79)55012-5. [DOI] [PubMed] [Google Scholar]
  14. Halestrap A. P., Davidson A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990 May 15;268(1):153–160. doi: 10.1042/bj2680153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Halestrap A. P., Kerr P. M., Javadov S., Woodfield K. Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):79–94. doi: 10.1016/s0005-2728(98)00122-4. [DOI] [PubMed] [Google Scholar]
  16. Halestrap A. P. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999;66:181–203. doi: 10.1042/bss0660181. [DOI] [PubMed] [Google Scholar]
  17. Halestrap A. P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. doi: 10.1042/bj2440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Halestrap A. P., Woodfield K. Y., Connern C. P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997 Feb 7;272(6):3346–3354. doi: 10.1074/jbc.272.6.3346. [DOI] [PubMed] [Google Scholar]
  19. Kerr P. M., Suleiman M. S., Halestrap A. P. Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol. 1999 Feb;276(2 Pt 2):H496–H502. doi: 10.1152/ajpheart.1999.276.2.H496. [DOI] [PubMed] [Google Scholar]
  20. Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–642. doi: 10.1146/annurev.physiol.60.1.619. [DOI] [PubMed] [Google Scholar]
  21. Köhler C., Gahm A., Noma T., Nakazawa A., Orrenius S., Zhivotovsky B. Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett. 1999 Mar 19;447(1):10–12. doi: 10.1016/s0014-5793(99)00251-3. [DOI] [PubMed] [Google Scholar]
  22. Lemasters J. J., Nieminen A. L., Qian T., Trost L. C., Elmore S. P., Nishimura Y., Crowe R. A., Cascio W. E., Bradham C. A., Brenner D. A. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):177–196. doi: 10.1016/s0005-2728(98)00112-1. [DOI] [PubMed] [Google Scholar]
  23. Li H., Yuan J. Deciphering the pathways of life and death. Curr Opin Cell Biol. 1999 Apr;11(2):261–266. doi: 10.1016/s0955-0674(99)80035-0. [DOI] [PubMed] [Google Scholar]
  24. Mangan P. S., Colombini M. Ultrasteep voltage dependence in a membrane channel. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4896–4900. doi: 10.1073/pnas.84.14.4896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mannella C. A. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol. 1998;121(2):207–218. doi: 10.1006/jsbi.1997.3954. [DOI] [PubMed] [Google Scholar]
  26. Martinou I., Desagher S., Eskes R., Antonsson B., André E., Fakan S., Martinou J. C. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol. 1999 Mar 8;144(5):883–889. doi: 10.1083/jcb.144.5.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marzo I., Brenner C., Kroemer G. The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother. 1998;52(6):248–251. doi: 10.1016/S0753-3322(98)80009-7. [DOI] [PubMed] [Google Scholar]
  28. Marzo I., Brenner C., Zamzami N., Jürgensmeier J. M., Susin S. A., Vieira H. L., Prévost M. C., Xie Z., Matsuyama S., Reed J. C. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998 Sep 25;281(5385):2027–2031. doi: 10.1126/science.281.5385.2027. [DOI] [PubMed] [Google Scholar]
  29. Marzulli D., La Piana G., Cafagno L., Fransvea E., Lofrumento N. E. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain. Arch Biochem Biophys. 1995 May 10;319(1):36–48. doi: 10.1006/abbi.1995.1264. [DOI] [PubMed] [Google Scholar]
  30. McEnery M. W., Snowman A. M., Trifiletti R. R., Snyder S. H. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3170–3174. doi: 10.1073/pnas.89.8.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Minamikawa T., Williams D. A., Bowser D. N., Nagley P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp Cell Res. 1999 Jan 10;246(1):26–37. doi: 10.1006/excr.1998.4290. [DOI] [PubMed] [Google Scholar]
  32. Nicotera P., Leist M., Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 1998 Dec 28;102-103:139–142. doi: 10.1016/s0378-4274(98)00298-7. [DOI] [PubMed] [Google Scholar]
  33. Poole R. C., Sansom C. E., Halestrap A. P. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J. 1996 Dec 15;320(Pt 3):817–824. doi: 10.1042/bj3200817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Priault M., Chaudhuri B., Clow A., Camougrand N., Manon S. Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem. 1999 Mar;260(3):684–691. doi: 10.1046/j.1432-1327.1999.00198.x. [DOI] [PubMed] [Google Scholar]
  35. Rostovtseva T., Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem. 1996 Nov 8;271(45):28006–28008. doi: 10.1074/jbc.271.45.28006. [DOI] [PubMed] [Google Scholar]
  36. Shimizu S., Narita M., Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999 Jun 3;399(6735):483–487. doi: 10.1038/20959. [DOI] [PubMed] [Google Scholar]
  37. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
  38. Vander Heiden M. G., Chandel N. S., Schumacker P. T., Thompson C. B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell. 1999 Feb;3(2):159–167. doi: 10.1016/s1097-2765(00)80307-x. [DOI] [PubMed] [Google Scholar]
  39. Vander Heiden M. G., Chandel N. S., Williamson E. K., Schumacker P. T., Thompson C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997 Nov 28;91(5):627–637. doi: 10.1016/s0092-8674(00)80450-x. [DOI] [PubMed] [Google Scholar]
  40. Wicker U., Bücheler K., Gellerich F. N., Wagner M., Kapischke M., Brdiczka D. Effect of macromolecules on the structure of the mitochondrial inter-membrane space and the regulation of hexokinase. Biochim Biophys Acta. 1993 May 6;1142(3):228–239. doi: 10.1016/0005-2728(93)90151-5. [DOI] [PubMed] [Google Scholar]
  41. Woodfield K., Rück A., Brdiczka D., Halestrap A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998 Dec 1;336(Pt 2):287–290. doi: 10.1042/bj3360287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang H., Heim J., Meyhack B. Redistribution of Bax from cytosol to membranes is induced by apoptotic stimuli and is an early step in the apoptotic pathway. Biochem Biophys Res Commun. 1998 Oct 20;251(2):454–459. doi: 10.1006/bbrc.1998.9485. [DOI] [PubMed] [Google Scholar]
  43. Zhuang J., Cohen G. M. Release of mitochondrial cytochrome c is upstream of caspase activation in chemical-induced apoptosis in human monocytic tumour cells. Toxicol Lett. 1998 Dec 28;102-103:121–129. doi: 10.1016/s0378-4274(98)00296-3. [DOI] [PubMed] [Google Scholar]
  44. de Jong D., Prins F. A., Mason D. Y., Reed J. C., van Ommen G. B., Kluin P. M. Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells. Cancer Res. 1994 Jan 1;54(1):256–260. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES