Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 1;348(Pt 2):367–373.

Interaction of Bacillus subtilis CsaA with SecA and precursor proteins.

J P Müller 1, J Ozegowski 1, S Vettermann 1, J Swaving 1, K H Van Wely 1, A J Driessen 1
PMCID: PMC1221075  PMID: 10816431

Abstract

CsaA from the Gram-positive bacterium Bacillus subtilis has been identified previously as a suppressor of the growth and protein-export defect of Escherichia coli secA(Ts) mutants. CsaA has chaperone-like activities in vivo and in vitro. To examine the role of CsaA in protein export in B. subtilis, expression of the csaA gene was repressed. While export of most proteins remained unaffected, export of at least two proteins was significantly reduced upon CsaA depletion. CsaA co-immunoprecipitates and co-purifies with the SecA proteins of E. coli and B. subtilis, and binds the B. subtilis preprotein prePhoB. Purified CsaA stimulates the translocation of prePhoB into E. coli membrane vesicles bearing the B. subtilis translocase, whereas it interferes with the SecB-mediated translocation of proOmpA into membrane vesicles of E. coli. The specific interaction with the SecA translocation ATPase and preproteins suggests that CsaA acts as a chaperone that promotes the export of a subset of preproteins in B. subtilis.

Full Text

The Full Text of this article is available as a PDF (223.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman E., Kumamoto C. A., Emr S. D. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 1991 Feb;10(2):239–245. doi: 10.1002/j.1460-2075.1991.tb07943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baneyx F., Georgiou G. In vivo degradation of secreted fusion proteins by the Escherichia coli outer membrane protease OmpT. J Bacteriol. 1990 Jan;172(1):491–494. doi: 10.1128/jb.172.1.491-494.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun P., Gerritse G., van Dijl J. M., Quax W. J. Improving protein secretion by engineering components of the bacterial translocation machinery. Curr Opin Biotechnol. 1999 Aug;10(4):376–381. doi: 10.1016/s0958-1669(99)80068-8. [DOI] [PubMed] [Google Scholar]
  4. Bunai K., Yamada K., Hayashi K., Nakamura K., Yamane K. Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J Biochem. 1999 Jan;125(1):151–159. doi: 10.1093/oxfordjournals.jbchem.a022252. [DOI] [PubMed] [Google Scholar]
  5. Cabelli R. J., Chen L., Tai P. C., Oliver D. B. SecA protein is required for secretory protein translocation into E. coli membrane vesicles. Cell. 1988 Nov 18;55(4):683–692. doi: 10.1016/0092-8674(88)90227-9. [DOI] [PubMed] [Google Scholar]
  6. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M. The chemistry and enzymology of the type I signal peptidases. Protein Sci. 1997 Jun;6(6):1129–1138. doi: 10.1002/pro.5560060601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dalbey R. E., Wickner W. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem. 1985 Dec 15;260(29):15925–15931. [PubMed] [Google Scholar]
  9. Douville K., Price A., Eichler J., Economou A., Wickner W. SecYEG and SecA are the stoichiometric components of preprotein translocase. J Biol Chem. 1995 Aug 25;270(34):20106–20111. doi: 10.1074/jbc.270.34.20106. [DOI] [PubMed] [Google Scholar]
  10. Economou A., Pogliano J. A., Beckwith J., Oliver D. B., Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell. 1995 Dec 29;83(7):1171–1181. doi: 10.1016/0092-8674(95)90143-4. [DOI] [PubMed] [Google Scholar]
  11. Fekkes P., Driessen A. J. Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev. 1999 Mar;63(1):161–173. doi: 10.1128/mmbr.63.1.161-173.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fekkes P., van der Does C., Driessen A. J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 1997 Oct 15;16(20):6105–6113. doi: 10.1093/emboj/16.20.6105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gardel C., Johnson K., Jacq A., Beckwith J. The secD locus of E.coli codes for two membrane proteins required for protein export. EMBO J. 1990 Oct;9(10):3209–3216. doi: 10.1002/j.1460-2075.1990.tb07519.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartl F. U., Lecker S., Schiebel E., Hendrick J. P., Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell. 1990 Oct 19;63(2):269–279. doi: 10.1016/0092-8674(90)90160-g. [DOI] [PubMed] [Google Scholar]
  15. Hoffschulte H. K., Drees B., Müller M. Identification of a soluble SecA/SecB complex by means of a subfractionated cell-free export system. J Biol Chem. 1994 Apr 29;269(17):12833–12839. [PubMed] [Google Scholar]
  16. Honda K., Nakamura K., Nishiguchi M., Yamane K. Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol. 1993 Aug;175(15):4885–4894. doi: 10.1128/jb.175.15.4885-4894.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hulett F. M., Bookstein C., Jensen K. Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):735–740. doi: 10.1128/jb.172.2.735-740.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawamura F., Doi R. H. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol. 1984 Oct;160(1):442–444. doi: 10.1128/jb.160.1.442-444.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kumamoto C. A., Beckwith J. Evidence for specificity at an early step in protein export in Escherichia coli. J Bacteriol. 1985 Jul;163(1):267–274. doi: 10.1128/jb.163.1.267-274.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kumamoto C. A., Francetić O. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. J Bacteriol. 1993 Apr;175(8):2184–2188. doi: 10.1128/jb.175.8.2184-2188.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kumamoto C. A., Nault A. K. Characterization of the Escherichia coli protein-export gene secB. Gene. 1989 Jan 30;75(1):167–175. doi: 10.1016/0378-1119(89)90393-4. [DOI] [PubMed] [Google Scholar]
  22. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A., Borchert S. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997 Nov 20;390(6657):249–256. doi: 10.1038/36786. [DOI] [PubMed] [Google Scholar]
  23. Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J. 1989 Nov;8(11):3517–3521. doi: 10.1002/j.1460-2075.1989.tb08517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lecker S., Lill R., Ziegelhoffer T., Georgopoulos C., Bassford P. J., Jr, Kumamoto C. A., Wickner W. Three pure chaperone proteins of Escherichia coli--SecB, trigger factor and GroEL--form soluble complexes with precursor proteins in vitro. EMBO J. 1989 Sep;8(9):2703–2709. doi: 10.1002/j.1460-2075.1989.tb08411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Müller J. P., Bron S., Venema G., van Dijl J. M. Chaperone-like activities of the CsaA protein of Bacillus subtilis. Microbiology. 2000 Jan;146(Pt 1):77–88. doi: 10.1099/00221287-146-1-77. [DOI] [PubMed] [Google Scholar]
  27. Müller J. P., Harwood C. R. Protein secretion in phosphate-limited cultures of Bacillus subtilis 168. Appl Microbiol Biotechnol. 1998 Mar;49(3):321–327. doi: 10.1007/s002530051176. [DOI] [PubMed] [Google Scholar]
  28. Müller J., Walter F., van Dijl J. M., Behnke D. Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol Gen Genet. 1992 Oct;235(1):89–96. doi: 10.1007/BF00286185. [DOI] [PubMed] [Google Scholar]
  29. Nakamura K., Imai Y., Nakamura A., Yamane K. Small cytoplasmic RNA of Bacillus subtilis: functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J Bacteriol. 1992 Apr;174(7):2185–2192. doi: 10.1128/jb.174.7.2185-2192.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oliver D. B., Beckwith J. Regulation of a membrane component required for protein secretion in Escherichia coli. Cell. 1982 Aug;30(1):311–319. doi: 10.1016/0092-8674(82)90037-x. [DOI] [PubMed] [Google Scholar]
  31. Phillips G. J., Silhavy T. J. The E. coli ffh gene is necessary for viability and efficient protein export. Nature. 1992 Oct 22;359(6397):744–746. doi: 10.1038/359744a0. [DOI] [PubMed] [Google Scholar]
  32. Randall L. L., Hardy S. J. High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. Trends Biochem Sci. 1995 Feb;20(2):65–69. doi: 10.1016/s0968-0004(00)88959-8. [DOI] [PubMed] [Google Scholar]
  33. Schön U., Schumann W. Overproduction, purification and characterization of GroES and GroEL from thermophilic Bacillus stearothermophilus. FEMS Microbiol Lett. 1995 Dec 15;134(2-3):183–188. doi: 10.1111/j.1574-6968.1995.tb07935.x. [DOI] [PubMed] [Google Scholar]
  34. Swaving J., van Wely K. H., Driessen A. J. Preprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. J Bacteriol. 1999 Nov;181(22):7021–7027. doi: 10.1128/jb.181.22.7021-7027.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vagner V., Dervyn E., Ehrlich S. D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology. 1998 Nov;144(Pt 11):3097–3104. doi: 10.1099/00221287-144-11-3097. [DOI] [PubMed] [Google Scholar]
  37. Weiss J. B., Ray P. H., Bassford P. J., Jr Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8978–8982. doi: 10.1073/pnas.85.23.8978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wickner W., Driessen A. J., Hartl F. U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem. 1991;60:101–124. doi: 10.1146/annurev.bi.60.070191.000533. [DOI] [PubMed] [Google Scholar]
  39. Wild J., Altman E., Yura T., Gross C. A. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 1992 Jul;6(7):1165–1172. doi: 10.1101/gad.6.7.1165. [DOI] [PubMed] [Google Scholar]
  40. Wild J., Rossmeissl P., Walter W. A., Gross C. A. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol. 1996 Jun;178(12):3608–3613. doi: 10.1128/jb.178.12.3608-3613.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wild J., Walter W. A., Gross C. A., Altman E. Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J Bacteriol. 1993 Jul;175(13):3992–3997. doi: 10.1128/jb.175.13.3992-3997.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Dijl J. M., de Jong A., Smith H., Bron S., Venema G. Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol Gen Genet. 1991 May;227(1):40–48. doi: 10.1007/BF00260704. [DOI] [PubMed] [Google Scholar]
  43. van Wely K. H., Swaving J., Driessen A. J. Translocation of the precursor of alpha-amylase into Bacillus subtilis membrane vesicles. Eur J Biochem. 1998 Aug 1;255(3):690–697. doi: 10.1046/j.1432-1327.1998.2550690.x. [DOI] [PubMed] [Google Scholar]
  44. van der Does C., Manting E. H., Kaufmann A., Lutz M., Driessen A. J. Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry. 1998 Jan 6;37(1):201–210. doi: 10.1021/bi972105t. [DOI] [PubMed] [Google Scholar]
  45. van der Does C., den Blaauwen T., de Wit J. G., Manting E. H., Groot N. A., Fekkes P., Driessen A. J. SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Mol Microbiol. 1996 Nov;22(4):619–629. doi: 10.1046/j.1365-2958.1996.d01-1712.x. [DOI] [PubMed] [Google Scholar]
  46. van der Wolk J., Klose M., Breukink E., Demel R. A., de Kruijff B., Freudl R., Driessen A. J. Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. Mol Microbiol. 1993 Apr;8(1):31–42. doi: 10.1111/j.1365-2958.1993.tb01200.x. [DOI] [PubMed] [Google Scholar]
  47. von Heijne G. The signal peptide. J Membr Biol. 1990 May;115(3):195–201. doi: 10.1007/BF01868635. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES