Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 15;348(Pt 3):481–495.

Retinoid-binding proteins: mediators of retinoid action.

N Noy 1
PMCID: PMC1221089  PMID: 10839978

Abstract

Active vitamin A metabolites, known as retinoids, are essential for multiple physiological processes, ranging from vision to embryonic development. These small hydrophobic compounds associate in vivo with soluble proteins that are present in a variety of cells and in particular extracellular compartments, and which bind different types of retinoids with high selectivity and affinity. Traditionally, retinoid-binding proteins were viewed as transport proteins that act by solubilizing and protecting their labile ligands in aqueous spaces. It is becoming increasingly clear, however, that, in addition to this general role, retinoid-binding proteins have diverse and specific functions in regulating the disposition, metabolism and activities of retinoids. Some retinoid-binding proteins appear to act by sequestering their ligands, thereby generating concentration gradients that allow cells to take up retinoids from extracellular pools and metabolic steps to proceed in energetically unfavourable directions. Other retinoid-binding proteins regulate the metabolic fates of their ligands by protecting them from some enzymes while allowing metabolism by others. In these cases, delivery of a bound retinoid from the binding protein to the 'correct' enzyme is likely to be mediated by direct and specific interactions between the two proteins. One retinoid-binding protein was reported to enhance the ability of its ligand to regulate gene transcription by directly delivering this retinoid to the transcription factor that is activated by it. 'Channelling' of retinoids between their corresponding binding protein and a particular protein target thus seems to be a general theme through which some retinoid-binding proteins exert their effects.

Full Text

The Full Text of this article is available as a PDF (377.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Spencer S. A. Effect of light on endogenous ligands carried by interphotoreceptor retinoid-binding protein. Exp Eye Res. 1991 Sep;53(3):337–346. doi: 10.1016/0014-4835(91)90239-b. [DOI] [PubMed] [Google Scholar]
  2. Aström A., Tavakkol A., Pettersson U., Cromie M., Elder J. T., Voorhees J. J. Molecular cloning of two human cellular retinoic acid-binding proteins (CRABP). Retinoic acid-induced expression of CRABP-II but not CRABP-I in adult human skin in vivo and in skin fibroblasts in vitro. J Biol Chem. 1991 Sep 15;266(26):17662–17666. [PubMed] [Google Scholar]
  3. Bazan N. G., Reddy T. S., Redmond T. M., Wiggert B., Chader G. J. Endogenous fatty acids are covalently and noncovalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J Biol Chem. 1985 Nov 5;260(25):13677–13680. [PubMed] [Google Scholar]
  4. Biesalski H. K., Frank J., Beck S. C., Heinrich F., Illek B., Reifen R., Gollnick H., Seeliger M. W., Wissinger B., Zrenner E. Biochemical but not clinical vitamin A deficiency results from mutations in the gene for retinol binding protein. Am J Clin Nutr. 1999 May;69(5):931–936. doi: 10.1093/ajcn/69.5.931. [DOI] [PubMed] [Google Scholar]
  5. Boerman M. H., Napoli J. L. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol. J Biol Chem. 1996 Mar 8;271(10):5610–5616. doi: 10.1074/jbc.271.10.5610. [DOI] [PubMed] [Google Scholar]
  6. Boerman M. H., Napoli J. L. Cholate-independent retinyl ester hydrolysis. Stimulation by Apo-cellular retinol-binding protein. J Biol Chem. 1991 Nov 25;266(33):22273–22278. [PubMed] [Google Scholar]
  7. Borst D. E., Redmond T. M., Elser J. E., Gonda M. A., Wiggert B., Chader G. J., Nickerson J. M. Interphotoreceptor retinoid-binding protein. Gene characterization, protein repeat structure, and its evolution. J Biol Chem. 1989 Jan 15;264(2):1115–1123. [PubMed] [Google Scholar]
  8. Boylan J. F., Gudas L. J. Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells. J Cell Biol. 1991 Mar;112(5):965–979. doi: 10.1083/jcb.112.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boylan J. F., Gudas L. J. The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol Chem. 1992 Oct 25;267(30):21486–21491. [PubMed] [Google Scholar]
  10. Bridges C. D., Foster R. G., Landers R. A., Fong S. L. Interstitial retinol-binding protein and cellular retinal-binding protein in the mammalian pineal. Vision Res. 1987;27(12):2049–2060. doi: 10.1016/0042-6989(87)90119-2. [DOI] [PubMed] [Google Scholar]
  11. Bridges C. D., Liou G. I., Alvarez R. A., Landers R. A., Landry A. M., Jr, Fong S. L. Distribution of interstitial retinol-binding protein (IRBP) in the vertebrates. J Exp Zool. 1986 Sep;239(3):335–346. doi: 10.1002/jez.1402390305. [DOI] [PubMed] [Google Scholar]
  12. Bucco R. A., Zheng W. L., Davis J. T., Sierra-Rivera E., Osteen K. G., Chaudhary A. K., Ong D. E. Cellular retinoic acid-binding protein(II) presence in rat uterine epithelial cells correlates with their synthesis of retinoic acid. Biochemistry. 1997 Apr 1;36(13):4009–4014. doi: 10.1021/bi962094o. [DOI] [PubMed] [Google Scholar]
  13. Båvik C. O., Lévy F., Hellman U., Wernstedt C., Eriksson U. The retinal pigment epithelial membrane receptor for plasma retinol-binding protein. Isolation and cDNA cloning of the 63-kDa protein. J Biol Chem. 1993 Sep 25;268(27):20540–20546. [PubMed] [Google Scholar]
  14. Båvik C. O., Peterson A., Eriksson U. Retinol-binding protein mediates uptake of retinol to cultured human keratinocytes. Exp Cell Res. 1995 Feb;216(2):358–362. doi: 10.1006/excr.1995.1045. [DOI] [PubMed] [Google Scholar]
  15. Chai X., Boerman M. H., Zhai Y., Napoli J. L. Cloning of a cDNA for liver microsomal retinol dehydrogenase. A tissue-specific, short-chain alcohol dehydrogenase. J Biol Chem. 1995 Feb 24;270(8):3900–3904. doi: 10.1074/jbc.270.8.3900. [DOI] [PubMed] [Google Scholar]
  16. Chai X., Zhai Y., Napoli J. L. Cloning of a rat cDNA encoding retinol dehydrogenase isozyme type III. Gene. 1996 Mar 9;169(2):219–222. doi: 10.1016/0378-1119(95)00833-0. [DOI] [PubMed] [Google Scholar]
  17. Chai X., Zhai Y., Popescu G., Napoli J. L. Cloning of a cDNA for a second retinol dehydrogenase type II. Expression of its mRNA relative to type I. J Biol Chem. 1995 Nov 24;270(47):28408–28412. doi: 10.1074/jbc.270.47.28408. [DOI] [PubMed] [Google Scholar]
  18. Chen H., Wiegand R. D., Koutz C. A., Anderson R. E. Docosahexaenoic acid increases in frog retinal pigment epithelium following rod photoreceptor shedding. Exp Eye Res. 1992 Jul;55(1):93–100. doi: 10.1016/0014-4835(92)90097-c. [DOI] [PubMed] [Google Scholar]
  19. Chen X., Tordova M., Gilliland G. L., Wang L., Li Y., Yan H., Ji X. Crystal structure of apo-cellular retinoic acid-binding protein type II (R111M) suggests a mechanism of ligand entry. J Mol Biol. 1998 May 8;278(3):641–653. doi: 10.1006/jmbi.1998.1734. [DOI] [PubMed] [Google Scholar]
  20. Chen Y., Houghton L. A., Brenna J. T., Noy N. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J Biol Chem. 1996 Aug 23;271(34):20507–20515. doi: 10.1074/jbc.271.34.20507. [DOI] [PubMed] [Google Scholar]
  21. Chen Y., Noy N. Retinoid specificity of interphotoreceptor retinoid-binding protein. Biochemistry. 1994 Sep 6;33(35):10658–10665. doi: 10.1021/bi00201a013. [DOI] [PubMed] [Google Scholar]
  22. Chen Y., Saari J. C., Noy N. Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry. 1993 Oct 26;32(42):11311–11318. doi: 10.1021/bi00093a007. [DOI] [PubMed] [Google Scholar]
  23. Cowan S. W., Newcomer M. E., Jones T. A. Crystallographic studies on a family of cellular lipophilic transport proteins. Refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with all-trans-retinol. J Mol Biol. 1993 Apr 20;230(4):1225–1246. doi: 10.1006/jmbi.1993.1238. [DOI] [PubMed] [Google Scholar]
  24. Crabb J. W., Nie Z., Chen Y., Hulmes J. D., West K. A., Kapron J. T., Ruuska S. E., Noy N., Saari J. C. Cellular retinaldehyde-binding protein ligand interactions. Gln-210 and Lys-221 are in the retinoid binding pocket. J Biol Chem. 1998 Aug 14;273(33):20712–20720. doi: 10.1074/jbc.273.33.20712. [DOI] [PubMed] [Google Scholar]
  25. Creek K. E., St Hilaire P., Hodam J. R. A comparison of the uptake, metabolism and biologic effects of retinol delivered to human keratinocytes either free or bound to serum retinol-binding protein. J Nutr. 1993 Feb;123(2 Suppl):356–361. doi: 10.1093/jn/123.suppl_2.356. [DOI] [PubMed] [Google Scholar]
  26. Crouch R. K., Hazard E. S., Lind T., Wiggert B., Chader G., Corson D. W. Interphotoreceptor retinoid-binding protein and alpha-tocopherol preserve the isomeric and oxidation state of retinol. Photochem Photobiol. 1992 Aug;56(2):251–255. doi: 10.1111/j.1751-1097.1992.tb02154.x. [DOI] [PubMed] [Google Scholar]
  27. Crow J. A., Ong D. E. Cell-specific immunohistochemical localization of a cellular retinol-binding protein (type two) in the small intestine of rat. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4707–4711. doi: 10.1073/pnas.82.14.4707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. De Boeck H., Zidovetzki R. NMR study of the interaction of retinoids with phospholipid bilayers. Biochim Biophys Acta. 1988 Dec 22;946(2):244–252. doi: 10.1016/0005-2736(88)90399-9. [DOI] [PubMed] [Google Scholar]
  29. De Leeuw A. M., Gaur V. P., Saari J. C., Milam A. H. Immunolocalization of cellular retinol-, retinaldehyde- and retinoic acid-binding proteins in rat retina during pre- and postnatal development. J Neurocytol. 1990 Apr;19(2):253–264. doi: 10.1007/BF01217303. [DOI] [PubMed] [Google Scholar]
  30. Deigner P. S., Law W. C., Cañada F. J., Rando R. R. Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science. 1989 May 26;244(4907):968–971. doi: 10.1126/science.2727688. [DOI] [PubMed] [Google Scholar]
  31. Delva L., Bastie J. N., Rochette-Egly C., Kraïba R., Balitrand N., Despouy G., Chambon P., Chomienne C. Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol. 1999 Oct;19(10):7158–7167. doi: 10.1128/mcb.19.10.7158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Dingle J. T., Lucy J. A. Membrane phenomenons in relation to vitamin A. Proc Nutr Soc. 1965;24(2):170–172. doi: 10.1079/pns19650031. [DOI] [PubMed] [Google Scholar]
  33. Dong D., Ruuska S. E., Levinthal D. J., Noy N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem. 1999 Aug 20;274(34):23695–23698. doi: 10.1074/jbc.274.34.23695. [DOI] [PubMed] [Google Scholar]
  34. Duester G. Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis. Biochemistry. 1996 Sep 24;35(38):12221–12227. doi: 10.1021/bi961176+. [DOI] [PubMed] [Google Scholar]
  35. Eichele G. Retinoids and vertebrate limb pattern formation. Trends Genet. 1989 Aug;5(8):246–251. doi: 10.1016/0168-9525(89)90096-6. [DOI] [PubMed] [Google Scholar]
  36. Eller M. S., Oleksiak M. F., McQuaid T. J., McAfee S. G., Gilchrest B. A. The molecular cloning and expression of two CRABP cDNAs from human skin. Exp Cell Res. 1992 Feb;198(2):328–336. doi: 10.1016/0014-4827(92)90387-n. [DOI] [PubMed] [Google Scholar]
  37. Eriksson U., Das K., Busch C., Nordlinder H., Rask L., Sundelin J., Sällström J., Peterson P. A. Cellular retinol-binding protein. Quantitation and distribution. J Biol Chem. 1984 Nov 10;259(21):13464–13470. [PubMed] [Google Scholar]
  38. Fawcett D., Pasceri P., Fraser R., Colbert M., Rossant J., Giguère V. Postaxial polydactyly in forelimbs of CRABP-II mutant mice. Development. 1995 Mar;121(3):671–679. doi: 10.1242/dev.121.3.671. [DOI] [PubMed] [Google Scholar]
  39. Fex G., Johannesson G. Retinol transfer across and between phospholipid bilayer membranes. Biochim Biophys Acta. 1988 Oct 6;944(2):249–255. doi: 10.1016/0005-2736(88)90438-5. [DOI] [PubMed] [Google Scholar]
  40. Fex G., Johannesson G. Transfer of retinol from retinol-binding protein complex to liposomes and across liposomal membranes. Methods Enzymol. 1990;189:394–402. doi: 10.1016/0076-6879(90)89313-7. [DOI] [PubMed] [Google Scholar]
  41. Fiorella P. D., Napoli J. L. Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism. J Biol Chem. 1991 Sep 5;266(25):16572–16579. [PubMed] [Google Scholar]
  42. Flannery J. G., O'Day W., Pfeffer B. A., Horwitz J., Bok D. Uptake, processing and release of retinoids by cultured human retinal pigment epithelium. Exp Eye Res. 1990 Dec;51(6):717–728. doi: 10.1016/0014-4835(90)90057-2. [DOI] [PubMed] [Google Scholar]
  43. Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fong S. L., Bridges C. D. Internal quadruplication in the structure of human interstitial retinol-binding protein deduced from its cloned cDNA. J Biol Chem. 1988 Oct 25;263(30):15330–15334. [PubMed] [Google Scholar]
  45. Fujii H., Sato T., Kaneko S., Gotoh O., Fujii-Kuriyama Y., Osawa K., Kato S., Hamada H. Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J. 1997 Jul 16;16(14):4163–4173. doi: 10.1093/emboj/16.14.4163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Futterman S., Saari J. C., Blair S. Occurrence of a binding protein for 11-cis-retinal in retina. J Biol Chem. 1977 May 25;252(10):3267–3271. [PubMed] [Google Scholar]
  47. Gamble M. V., Shang E., Zott R. P., Mertz J. R., Wolgemuth D. J., Blaner W. S. Biochemical properties, tissue expression, and gene structure of a short chain dehydrogenase/ reductase able to catalyze cis-retinol oxidation. J Lipid Res. 1999 Dec;40(12):2279–2292. [PubMed] [Google Scholar]
  48. Gaub M. P., Lutz Y., Ghyselinck N. B., Scheuer I., Pfister V., Chambon P., Rochette-Egly C. Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies. J Histochem Cytochem. 1998 Oct;46(10):1103–1111. doi: 10.1177/002215549804601002. [DOI] [PubMed] [Google Scholar]
  49. Ghyselinck N. B., Båvik C., Sapin V., Mark M., Bonnier D., Hindelang C., Dierich A., Nilsson C. B., Håkansson H., Sauvant P. Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J. 1999 Sep 15;18(18):4903–4914. doi: 10.1093/emboj/18.18.4903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Giguère V., Lyn S., Yip P., Siu C. H., Amin S. Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6233–6237. doi: 10.1073/pnas.87.16.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Haeseleer F., Huang J., Lebioda L., Saari J. C., Palczewski K. Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem. 1998 Aug 21;273(34):21790–21799. doi: 10.1074/jbc.273.34.21790. [DOI] [PubMed] [Google Scholar]
  52. Hamel C. P., Tsilou E., Pfeffer B. A., Hooks J. J., Detrick B., Redmond T. M. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem. 1993 Jul 25;268(21):15751–15757. [PubMed] [Google Scholar]
  53. Harrison E. H., Blaner W. S., Goodman D. S., Ross A. C. Subcellular localization of retinoids, retinoid-binding proteins, and acyl-CoA:retinol acyltransferase in rat liver. J Lipid Res. 1987 Aug;28(8):973–981. [PubMed] [Google Scholar]
  54. Heller J. Interactions of plasma retinol-binding protein with its receptor. Specific binding of bovine and human retinol-binding protein to pigment epithelium cells from bovine eyes. J Biol Chem. 1975 May 25;250(10):3613–3619. [PubMed] [Google Scholar]
  55. Herr F. M., Ong D. E. Differential interaction of lecithin-retinol acyltransferase with cellular retinol binding proteins. Biochemistry. 1992 Jul 28;31(29):6748–6755. doi: 10.1021/bi00144a014. [DOI] [PubMed] [Google Scholar]
  56. Ho M. T., Massey J. B., Pownall H. J., Anderson R. E., Hollyfield J. G. Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem. 1989 Jan 15;264(2):928–935. [PubMed] [Google Scholar]
  57. Hodam J. R., Creek K. E. Comparison of the metabolism of retinol delivered to human keratinocytes either bound to serum retinol-binding protein or added directly to the culture medium. Exp Cell Res. 1998 Jan 10;238(1):257–264. doi: 10.1006/excr.1997.3857. [DOI] [PubMed] [Google Scholar]
  58. Jing Y., Waxman S., Mira-y-Lopez R. The cellular retinoic acid binding protein II is a positive regulator of retinoic acid signaling in breast cancer cells. Cancer Res. 1997 May 1;57(9):1668–1672. [PubMed] [Google Scholar]
  59. Jones G. J., Crouch R. K., Wiggert B., Cornwall M. C., Chader G. J. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9606–9610. doi: 10.1073/pnas.86.23.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Jurukovski V., Markova N. G., Karaman-Jurukovska N., Randolph R. K., Su J., Napoli J. L., Simon M. Cloning and characterization of retinol dehydrogenase transcripts expressed in human epidermal keratinocytes. Mol Genet Metab. 1999 May;67(1):62–73. doi: 10.1006/mgme.1999.2840. [DOI] [PubMed] [Google Scholar]
  61. Kakkad B. P., Ong D. E. Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J Biol Chem. 1988 Sep 15;263(26):12916–12919. [PubMed] [Google Scholar]
  62. Kato M., Kato K., Goodman D. S. Immunocytochemical studies on the localization of plasma and of cellular retinol-binding proteins and of transthyretin (prealbumin) in rat liver and kidney. J Cell Biol. 1984 May;98(5):1696–1704. doi: 10.1083/jcb.98.5.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Keiler K. C., Sauer R. T. Identification of active site residues of the Tsp protease. J Biol Chem. 1995 Dec 1;270(48):28864–28868. doi: 10.1074/jbc.270.48.28864. [DOI] [PubMed] [Google Scholar]
  64. Kleywegt G. J., Bergfors T., Senn H., Le Motte P., Gsell B., Shudo K., Jones T. A. Crystal structures of cellular retinoic acid binding proteins I and II in complex with all-trans-retinoic acid and a synthetic retinoid. Structure. 1994 Dec 15;2(12):1241–1258. doi: 10.1016/s0969-2126(94)00125-1. [DOI] [PubMed] [Google Scholar]
  65. Lampron C., Rochette-Egly C., Gorry P., Dollé P., Mark M., Lufkin T., LeMeur M., Chambon P. Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development. 1995 Feb;121(2):539–548. doi: 10.1242/dev.121.2.539. [DOI] [PubMed] [Google Scholar]
  66. Levin M. S., Locke B., Yang N. C., Li E., Gordon J. I. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli. J Biol Chem. 1988 Nov 25;263(33):17715–17723. [PubMed] [Google Scholar]
  67. Li E., Demmer L. A., Sweetser D. A., Ong D. E., Gordon J. I. Rat cellular retinol-binding protein II: use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5779–5783. doi: 10.1073/pnas.83.16.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Li E., Norris A. W. Structure/function of cytoplasmic vitamin A-binding proteins. Annu Rev Nutr. 1996;16:205–234. doi: 10.1146/annurev.nu.16.070196.001225. [DOI] [PubMed] [Google Scholar]
  69. Li E., Qian S. J., Winter N. S., d'Avignon A., Levin M. S., Gordon J. I. Fluorine nuclear magnetic resonance analysis of the ligand binding properties of two homologous rat cellular retinol-binding proteins expressed in Escherichia coli. J Biol Chem. 1991 Feb 25;266(6):3622–3629. [PubMed] [Google Scholar]
  70. Lion F., Rotmans J. P., Daemen F. J., Bonting S. L. Biochemical aspects of the visual process. XXVII. Stereospecificity of ocular retinol dehydrogenases and the visual cycle. Biochim Biophys Acta. 1975 Apr 19;384(2):283–292. doi: 10.1016/0005-2744(75)90030-3. [DOI] [PubMed] [Google Scholar]
  71. Lu J., Lin C. L., Tang C., Ponder J. W., Kao J. L., Cistola D. P., Li E. The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure. J Mol Biol. 1999 Mar 5;286(4):1179–1195. doi: 10.1006/jmbi.1999.2544. [DOI] [PubMed] [Google Scholar]
  72. MacDonald P. N., Ong D. E. Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. J Biol Chem. 1987 Aug 5;262(22):10550–10556. [PubMed] [Google Scholar]
  73. Mack J. P., Lui N. S., Roels O. A., Anderson O. R. The occurrence of vitamin A in biological membranes. Biochim Biophys Acta. 1972 Oct 23;288(1):203–219. doi: 10.1016/0005-2736(72)90239-8. [DOI] [PubMed] [Google Scholar]
  74. Malaba L., Kindberg G. M., Norum K. R., Berg T., Blomhoff R. Receptor-mediated endocytosis of retinol-binding protein by liver parenchymal cells: interference by radioactive iodination. Biochem J. 1993 Apr 1;291(Pt 1):187–191. doi: 10.1042/bj2910187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Martin-Alonso J. M., Ghosh S., Hernando N., Crabb J. W., Coca-Prados M. Differential expression of the cellular retinaldehyde-binding protein in bovine ciliary epithelium. Exp Eye Res. 1993 Jun;56(6):659–669. doi: 10.1006/exer.1993.1083. [DOI] [PubMed] [Google Scholar]
  76. Maw M. A., Kennedy B., Knight A., Bridges R., Roth K. E., Mani E. J., Mukkadan J. K., Nancarrow D., Crabb J. W., Denton M. J. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997 Oct;17(2):198–200. doi: 10.1038/ng1097-198. [DOI] [PubMed] [Google Scholar]
  77. Monaco H. L., Mancia F., Rizzi M., Coda A. Crystallization of the macromolecular complex transthyretin-retinol-binding protein. J Mol Biol. 1994 Nov 18;244(1):110–113. doi: 10.1006/jmbi.1994.1708. [DOI] [PubMed] [Google Scholar]
  78. Napoli J. L., Posch K. P., Fiorella P. D., Boerman M. H. Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed Pharmacother. 1991;45(4-5):131–143. doi: 10.1016/0753-3322(91)90101-x. [DOI] [PubMed] [Google Scholar]
  79. Naylor H. M., Newcomer M. E. The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP. Biochemistry. 1999 Mar 2;38(9):2647–2653. doi: 10.1021/bi982291i. [DOI] [PubMed] [Google Scholar]
  80. Newcomer M. E., Jones T. A., Aqvist J., Sundelin J., Eriksson U., Rask L., Peterson P. A. The three-dimensional structure of retinol-binding protein. EMBO J. 1984 Jul;3(7):1451–1454. doi: 10.1002/j.1460-2075.1984.tb01995.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Nicoletti A., Wong D. J., Kawase K., Gibson L. H., Yang-Feng T. L., Richards J. E., Thompson D. A. Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium. Hum Mol Genet. 1995 Apr;4(4):641–649. doi: 10.1093/hmg/4.4.641. [DOI] [PubMed] [Google Scholar]
  82. Nilsson M. H., Spurr N. K., Saksena P., Busch C., Nordlinder H., Peterson P. A., Rask L., Sundelin J. Isolation and characterization of a cDNA clone corresponding to bovine cellular retinoic-acid-binding protein and chromosomal localization of the corresponding human gene. Eur J Biochem. 1988 Apr 5;173(1):45–51. doi: 10.1111/j.1432-1033.1988.tb13964.x. [DOI] [PubMed] [Google Scholar]
  83. Norris A. W., Cheng L., Giguère V., Rosenberger M., Li E. Measurement of subnanomolar retinoic acid binding affinities for cellular retinoic acid binding proteins by fluorometric titration. Biochim Biophys Acta. 1994 Nov 16;1209(1):10–18. doi: 10.1016/0167-4838(94)90130-9. [DOI] [PubMed] [Google Scholar]
  84. Noy N., Blaner W. S. Interactions of retinol with binding proteins: studies with rat cellular retinol-binding protein and with rat retinol-binding protein. Biochemistry. 1991 Jul 2;30(26):6380–6386. doi: 10.1021/bi00240a005. [DOI] [PubMed] [Google Scholar]
  85. Noy N., Xu Z. J. Interactions of retinol with binding proteins: implications for the mechanism of uptake by cells. Biochemistry. 1990 Apr 24;29(16):3878–3883. doi: 10.1021/bi00468a012. [DOI] [PubMed] [Google Scholar]
  86. Noy N., Xu Z. J. Kinetic parameters of the interactions of retinol with lipid bilayers. Biochemistry. 1990 Apr 24;29(16):3883–3888. doi: 10.1021/bi00468a013. [DOI] [PubMed] [Google Scholar]
  87. Noy N., Xu Z. J. Thermodynamic parameters of the binding of retinol to binding proteins and to membranes. Biochemistry. 1990 Apr 24;29(16):3888–3892. doi: 10.1021/bi00468a014. [DOI] [PubMed] [Google Scholar]
  88. Okajima T. I., Wiggert B., Chader G. J., Pepperberg D. R. Retinoid processing in retinal pigment epithelium of toad (Bufo marinus). J Biol Chem. 1994 Sep 2;269(35):21983–21989. [PubMed] [Google Scholar]
  89. Ong D. E. A novel retinol-binding protein from rat. Purification and partial characterization. J Biol Chem. 1984 Feb 10;259(3):1476–1482. [PubMed] [Google Scholar]
  90. Ong D. E., Chytil F. Cellular retinol-binding protein from rat liver. Purification and characterization. J Biol Chem. 1978 Feb 10;253(3):828–832. [PubMed] [Google Scholar]
  91. Palczewski K., Van Hooser J. P., Garwin G. G., Chen J., Liou G. I., Saari J. C. Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin. Biochemistry. 1999 Sep 14;38(37):12012–12019. doi: 10.1021/bi990504d. [DOI] [PubMed] [Google Scholar]
  92. Penzes P., Wang X., Sperkova Z., Napoli J. L. Cloning of a rat cDNA encoding retinal dehydrogenase isozyme type I and its expression in E. coli. Gene. 1997 Jun 3;191(2):167–172. doi: 10.1016/s0378-1119(97)00054-1. [DOI] [PubMed] [Google Scholar]
  93. Pepperberg D. R., Okajima T. L., Wiggert B., Ripps H., Crouch R. K., Chader G. J. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol. 1993 Spring;7(1):61–85. doi: 10.1007/BF02780609. [DOI] [PubMed] [Google Scholar]
  94. Posch K. C., Boerman M. H., Burns R. D., Napoli J. L. Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Biochemistry. 1991 Jun 25;30(25):6224–6230. doi: 10.1021/bi00239a021. [DOI] [PubMed] [Google Scholar]
  95. Quadro L., Blaner W. S., Salchow D. J., Vogel S., Piantedosi R., Gouras P., Freeman S., Cosma M. P., Colantuoni V., Gottesman M. E. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999 Sep 1;18(17):4633–4644. doi: 10.1093/emboj/18.17.4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Rask L., Geijer C., Bill A., Peterson P. A. Vitamin A supply of the cornea. Exp Eye Res. 1980 Aug;31(2):201–211. doi: 10.1016/0014-4835(80)90078-0. [DOI] [PubMed] [Google Scholar]
  97. Rask L., Peterson P. A. In vitro uptake of vitamin A from the retinol-binding plasma protein to mucosal epithelial cells from the monkey's small intestine. J Biol Chem. 1976 Oct 25;251(20):6360–6366. [PubMed] [Google Scholar]
  98. Ray W. J., Bain G., Yao M., Gottlieb D. I. CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem. 1997 Jul 25;272(30):18702–18708. doi: 10.1074/jbc.272.30.18702. [DOI] [PubMed] [Google Scholar]
  99. Redmond T. M., Yu S., Lee E., Bok D., Hamasaki D., Chen N., Goletz P., Ma J. X., Crouch R. K., Pfeifer K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998 Dec;20(4):344–351. doi: 10.1038/3813. [DOI] [PubMed] [Google Scholar]
  100. Reppe S., Smeland S., Moskaug J. O., Blomhoff R. Retinol-induced secretion of human retinol-binding protein in yeast. FEBS Lett. 1998 May 8;427(2):213–219. doi: 10.1016/s0014-5793(98)00428-1. [DOI] [PubMed] [Google Scholar]
  101. Ruiz A., Winston A., Lim Y. H., Gilbert B. A., Rando R. R., Bok D. Molecular and biochemical characterization of lecithin retinol acyltransferase. J Biol Chem. 1999 Feb 5;274(6):3834–3841. doi: 10.1074/jbc.274.6.3834. [DOI] [PubMed] [Google Scholar]
  102. Saari J. C., Bredberg D. L. CoA- and non-CoA-dependent retinol esterification in retinal pigment epithelium. J Biol Chem. 1988 Jun 15;263(17):8084–8090. [PubMed] [Google Scholar]
  103. Saari J. C., Bredberg D. L. Lecithin:retinol acyltransferase in retinal pigment epithelial microsomes. J Biol Chem. 1989 May 25;264(15):8636–8640. [PubMed] [Google Scholar]
  104. Saari J. C., Bredberg D. L., Noy N. Control of substrate flow at a branch in the visual cycle. Biochemistry. 1994 Mar 15;33(10):3106–3112. doi: 10.1021/bi00176a045. [DOI] [PubMed] [Google Scholar]
  105. Saari J. C., Bredberg L., Garwin G. G. Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem. 1982 Nov 25;257(22):13329–13333. [PubMed] [Google Scholar]
  106. Saari J. C., Huang J., Possin D. E., Fariss R. N., Leonard J., Garwin G. G., Crabb J. W., Milam A. H. Cellular retinaldehyde-binding protein is expressed by oligodendrocytes in optic nerve and brain. Glia. 1997 Nov;21(3):259–268. [PubMed] [Google Scholar]
  107. Saari J. C., Teller D. C., Crabb J. W., Bredberg L. Properties of an interphotoreceptor retinoid-binding protein from bovine retina. J Biol Chem. 1985 Jan 10;260(1):195–201. [PubMed] [Google Scholar]
  108. Salama S. R., Cleves A. E., Malehorn D. E., Whitters E. A., Bankaitis V. A. Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates Golgi secretory function in Saccharomyces cerevisiae. J Bacteriol. 1990 Aug;172(8):4510–4521. doi: 10.1128/jb.172.8.4510-4521.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Sapin V., Ward S. J., Bronner S., Chambon P., Dollé P. Differential expression of transcripts encoding retinoid binding proteins and retinoic acid receptors during placentation of the mouse. Dev Dyn. 1997 Feb;208(2):199–210. doi: 10.1002/(SICI)1097-0177(199702)208:2<199::AID-AJA7>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  110. Sarthy V. Cellular retinaldehyde-binding protein localization in cornea. Exp Eye Res. 1996 Dec;63(6):759–762. doi: 10.1006/exer.1996.0170. [DOI] [PubMed] [Google Scholar]
  111. Sato Y., Arai H., Miyata A., Tokita S., Yamamoto K., Tanabe T., Inoue K. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J Biol Chem. 1993 Aug 25;268(24):17705–17710. [PubMed] [Google Scholar]
  112. Schaefer W. H., Kakkad B., Crow J. A., Blair I. A., Ong D. E. Purification, primary structure characterization, and cellular distribution of two forms of cellular retinol-binding protein, type II from adult rat small intestine. J Biol Chem. 1989 Mar 5;264(7):4212–4221. [PubMed] [Google Scholar]
  113. Seeliger M. W., Biesalski H. K., Wissinger B., Gollnick H., Gielen S., Frank J., Beck S., Zrenner E. Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Invest Ophthalmol Vis Sci. 1999 Jan;40(1):3–11. [PubMed] [Google Scholar]
  114. Shubeita H. E., Sambrook J. F., McCormick A. M. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5645–5649. doi: 10.1073/pnas.84.16.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Simon A., Lagercrantz J., Bajalica-Lagercrantz S., Eriksson U. Primary structure of human 11-cis retinol dehydrogenase and organization and chromosomal localization of the corresponding gene. Genomics. 1996 Sep 15;36(3):424–430. doi: 10.1006/geno.1996.0487. [DOI] [PubMed] [Google Scholar]
  116. Sivaprasadarao A., Boudjelal M., Findlay J. B. Solubilization and purification of the retinol-binding protein receptor from human placental membranes. Biochem J. 1994 Aug 15;302(Pt 1):245–251. doi: 10.1042/bj3020245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Stecher H., Gelb M. H., Saari J. C., Palczewski K. Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem. 1999 Mar 26;274(13):8577–8585. doi: 10.1074/jbc.274.13.8577. [DOI] [PubMed] [Google Scholar]
  118. Stillwell W., Ricketts M., Hudson H., Nahmias S. Effect of retinol and retinoic acid on permeability, electrical resistance and phase transition of lipid bilayers. Biochim Biophys Acta. 1982 Jun 14;688(2):653–659. doi: 10.1016/0005-2736(82)90376-5. [DOI] [PubMed] [Google Scholar]
  119. Stoner C. M., Gudas L. J. Mouse cellular retinoic acid binding protein: cloning, complementary DNA sequence, and messenger RNA expression during the retinoic acid-induced differentiation of F9 wild type and RA-3-10 mutant teratocarcinoma cells. Cancer Res. 1989 Mar 15;49(6):1497–1504. [PubMed] [Google Scholar]
  120. Sundaram M., Sivaprasadarao A., DeSousa M. M., Findlay J. B. The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor. J Biol Chem. 1998 Feb 6;273(6):3336–3342. doi: 10.1074/jbc.273.6.3336. [DOI] [PubMed] [Google Scholar]
  121. Takase S., Ong D. E., Chytil F. Transfer of retinoic acid from its complex with cellular retinoic acid-binding protein to the nucleus. Arch Biochem Biophys. 1986 Jun;247(2):328–334. doi: 10.1016/0003-9861(86)90591-6. [DOI] [PubMed] [Google Scholar]
  122. Thompson J. R., Bratt J. M., Banaszak L. J. Crystal structure of cellular retinoic acid binding protein I shows increased access to the binding cavity due to formation of an intermolecular beta-sheet. J Mol Biol. 1995 Sep 29;252(4):433–446. doi: 10.1006/jmbi.1995.0509. [DOI] [PubMed] [Google Scholar]
  123. Tschanz C. L., Noy N. Binding of retinol in both retinoid-binding sites of interphotoreceptor retinoid-binding protein (IRBP) is stabilized mainly by hydrophobic interactions. J Biol Chem. 1997 Nov 28;272(48):30201–30207. doi: 10.1074/jbc.272.48.30201. [DOI] [PubMed] [Google Scholar]
  124. Vieira A. V., Schneider W. J. Transport and uptake of retinol during chicken oocyte growth. Biochim Biophys Acta. 1993 Sep 8;1169(3):250–256. doi: 10.1016/0005-2760(93)90248-8. [DOI] [PubMed] [Google Scholar]
  125. Vo H. P., Crowe D. L. Transcriptional regulation of retinoic acid responsive genes by cellular retinoic acid binding protein-II modulates RA mediated tumor cell proliferation and invasion. Anticancer Res. 1998 Jan-Feb;18(1A):217–224. [PubMed] [Google Scholar]
  126. Wang L., Li Y., Abildgaard F., Markley J. L., Yan H. NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Biochemistry. 1998 Sep 15;37(37):12727–12736. doi: 10.1021/bi9808924. [DOI] [PubMed] [Google Scholar]
  127. Wang X., Penzes P., Napoli J. L. Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli. Recognition of retinal as substrate. J Biol Chem. 1996 Jul 5;271(27):16288–16293. doi: 10.1074/jbc.271.27.16288. [DOI] [PubMed] [Google Scholar]
  128. Ward S. J., Chambon P., Ong D. E., Båvik C. A retinol-binding protein receptor-mediated mechanism for uptake of vitamin A to postimplantation rat embryos. Biol Reprod. 1997 Oct;57(4):751–755. doi: 10.1095/biolreprod57.4.751. [DOI] [PubMed] [Google Scholar]
  129. Wardlaw S. A., Bucco R. A., Zheng W. L., Ong D. E. Variable expression of cellular retinol- and cellular retinoic acid-binding proteins in the rat uterus and ovary during the estrous cycle. Biol Reprod. 1997 Jan;56(1):125–132. doi: 10.1095/biolreprod56.1.125. [DOI] [PubMed] [Google Scholar]
  130. Wassall S. R., Phelps T. M., Albrecht M. R., Langsford C. A., Stillwell W. Electron spin resonance study of the interactions of retinoids with a phospholipid model membrane. Biochim Biophys Acta. 1988 Apr 7;939(2):393–402. doi: 10.1016/0005-2736(88)90085-5. [DOI] [PubMed] [Google Scholar]
  131. White J. A., Beckett-Jones B., Guo Y. D., Dilworth F. J., Bonasoro J., Jones G., Petkovich M. cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem. 1997 Jul 25;272(30):18538–18541. doi: 10.1074/jbc.272.30.18538. [DOI] [PubMed] [Google Scholar]
  132. White J. A., Guo Y. D., Baetz K., Beckett-Jones B., Bonasoro J., Hsu K. E., Dilworth F. J., Jones G., Petkovich M. Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem. 1996 Nov 22;271(47):29922–29927. doi: 10.1074/jbc.271.47.29922. [DOI] [PubMed] [Google Scholar]
  133. Winston A., Rando R. R. Regulation of isomerohydrolase activity in the visual cycle. Biochemistry. 1998 Feb 17;37(7):2044–2050. doi: 10.1021/bi971908d. [DOI] [PubMed] [Google Scholar]
  134. Winter N. S., Bratt J. M., Banaszak L. J. Crystal structures of holo and apo-cellular retinol-binding protein II. J Mol Biol. 1993 Apr 20;230(4):1247–1259. doi: 10.1006/jmbi.1993.1239. [DOI] [PubMed] [Google Scholar]
  135. Yamamoto M., Dräger U. C., Ong D. E., McCaffery P. Retinoid-binding proteins in the cerebellum and choroid plexus and their relationship to regionalized retinoic acid synthesis and degradation. Eur J Biochem. 1998 Oct 15;257(2):344–350. doi: 10.1046/j.1432-1327.1998.2570344.x. [DOI] [PubMed] [Google Scholar]
  136. Zanotti G., Berni R., Monaco H. L. Crystal structure of liganded and unliganded forms of bovine plasma retinol-binding protein. J Biol Chem. 1993 May 25;268(15):10728–10738. [PubMed] [Google Scholar]
  137. Zetterström R. H., Simon A., Giacobini M. M., Eriksson U., Olson L. Localization of cellular retinoid-binding proteins suggests specific roles for retinoids in the adult central nervous system. Neuroscience. 1994 Oct;62(3):899–918. doi: 10.1016/0306-4522(94)90482-0. [DOI] [PubMed] [Google Scholar]
  138. Zheng W. L., Bucco R. A., Schmitt M. C., Wardlaw S. A., Ong D. E. Localization of cellular retinoic acid-binding protein (CRABP) II and CRABP in developing rat testis. Endocrinology. 1996 Nov;137(11):5028–5035. doi: 10.1210/endo.137.11.8895377. [DOI] [PubMed] [Google Scholar]
  139. Zheng W. L., Ong D. E. Spatial and temporal patterns of expression of cellular retinol-binding protein and cellular retinoic acid-binding proteins in rat uterus during early pregnancy. Biol Reprod. 1998 Apr;58(4):963–970. doi: 10.1095/biolreprod58.4.963. [DOI] [PubMed] [Google Scholar]
  140. van Bennekum A. M., Blaner W. S., Seifert-Bock I., Moukides M., Brouwer A., Hendriks H. F. Retinol uptake from retinol-binding protein (RBP) by liver parenchymal cells in vitro does not specifically depend on its binding to RBP. Biochemistry. 1993 Feb 23;32(7):1727–1733. doi: 10.1021/bi00058a005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES