Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 15;348(Pt 3):539–549.

A novel lysine 2,3-aminomutase encoded by the yodO gene of bacillus subtilis: characterization and the observation of organic radical intermediates.

D Chen 1, F J Ruzicka 1, P A Frey 1
PMCID: PMC1221095  PMID: 10839984

Abstract

The yodO gene product of Bacillus subtilis has been cloned and overexpressed in Escherichia coli and purified. The nucleotide sequence encodes a protein of 471 amino acids with a calculated molecular mass of 54071 Da. The translated amino acid sequence is more than 60% identical to that of the lysine 2,3-aminomutase from Clostridium subterminale SB4. Analytical HPLC gel-permeation chromatography leads to an estimate of an over all molecular mass of 224000+/-21000 Da, which corresponds to a tetrameric protein. The purified protein contains iron, sulphide and pyridoxal 5'-phosphate (PLP) and displays an optical absorption band extending to 700 nm, suggesting the presence of an iron-sulphide cluster. After reductive incubation with L-cysteine anaerobically, the protein catalyses the transformation of L-lysine into beta-lysine in the presence of S-adenosylmethionine (AdoMet) and sodium dithionite. The K(m) value for L-lysine is estimated to be 8.0+/-2.2 mM. The iron-sulphur centre is stable in air,allowing aerobic purification. EPR spectroscopy at 10 K of the purified enzyme revealed an EPR signal similar to that of the [4Fe-4S](3+) cluster observed in the clostridial lysine 2, 3-aminomutase. Incubation with cysteine under anaerobic conditions converts the iron-sulphur centre into the EPR-silent [4Fe-4S](2+). Unlike the clostridial enzyme, the fully reduced [4Fe-4S](+) could not be characterized by further reduction with dithionite in the presence of AdoMet, although both dithionite and AdoMet were required to activate the enzyme. Upon addition of L-lysine, dithionite and AdoMet to the reduced enzyme and freezing the solution to 77 K, the EPR spectrum revealed the presence of an organic free-radical signal (g=2.0023), which displayed multiple hyperfine transitions very similar to the spectrum of the beta-lysine-related radical in the mechanism of the clostridial lysine 2,3-aminomutase. Experiments with isotopically substituted L-lysine and lysine analogues verified the association of spin density with the carbon skeleton of lysine. The data indicate that the protein encoded by the yodO gene of B. subtilis is a novel lysine 2,3-aminomutase. The E. coli homologue of clostridial lysine 2,3-aminomutase was also expressed in E. coli and purified. This protein contained ironand sulphide but not PLP, it did not display lysine 2,3-aminomutase activity, and addition of PLP did not induce 2,3-aminomutase activity.

Full Text

The Full Text of this article is available as a PDF (192.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki H., Dekany K., Adams S. L., Ganoza M. C. The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J Biol Chem. 1997 Dec 19;272(51):32254–32259. doi: 10.1074/jbc.272.51.32254. [DOI] [PubMed] [Google Scholar]
  2. Ballinger M. D., Frey P. A., Reed G. H., LoBrutto R. Pulsed electron paramagnetic resonance studies of the lysine 2,3-aminomutase substrate radical: evidence for participation of pyridoxal 5'-phosphate in a radical rearrangement. Biochemistry. 1995 Aug 8;34(31):10086–10093. doi: 10.1021/bi00031a033. [DOI] [PubMed] [Google Scholar]
  3. Ballinger M. D., Frey P. A., Reed G. H. Structure of a substrate radical intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry. 1992 Nov 10;31(44):10782–10789. doi: 10.1021/bi00159a020. [DOI] [PubMed] [Google Scholar]
  4. Ballinger M. D., Reed G. H., Frey P. A. An organic radical in the lysine 2,3-aminomutase reaction. Biochemistry. 1992 Feb 4;31(4):949–953. doi: 10.1021/bi00119a001. [DOI] [PubMed] [Google Scholar]
  5. Baraniak J., Moss M. L., Frey P. A. Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine. J Biol Chem. 1989 Jan 25;264(3):1357–1360. [PubMed] [Google Scholar]
  6. Beinert H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem. 1983 Jun;131(2):373–378. doi: 10.1016/0003-2697(83)90186-0. [DOI] [PubMed] [Google Scholar]
  7. Ben-Zvi A. P., Chatellier J., Fersht A. R., Goloubinoff P. Minimal and optimal mechanisms for GroE-mediated protein folding. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15275–15280. doi: 10.1073/pnas.95.26.15275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carter J. H., 2nd, Du Bus R. H., Dyer J. R., Floyd J. C., Rice K. C., Shaw P. D. Biosynthesis of viomycin. II. Origin of beta-lysine and viomycidine. Biochemistry. 1974 Mar 12;13(6):1227–1233. doi: 10.1021/bi00703a027. [DOI] [PubMed] [Google Scholar]
  9. Chirpich T. P., Zappia V., Costilow R. N., Barker H. A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J Biol Chem. 1970 Apr 10;245(7):1778–1789. [PubMed] [Google Scholar]
  10. Costilow R. N., Rochovansky O. M., Barker H. A. Isolation and identification of beta-lysine as an intermediate in lysine fermentation. J Biol Chem. 1966 Apr 10;241(7):1573–1580. [PubMed] [Google Scholar]
  11. Ebert R. F. Amino acid analysis by HPLC: optimized conditions for chromatography of phenylthiocarbamyl derivatives. Anal Biochem. 1986 May 1;154(2):431–435. doi: 10.1016/0003-2697(86)90010-2. [DOI] [PubMed] [Google Scholar]
  12. Flint Dennis H., Allen Ronda M. Ironminus signSulfur Proteins with Nonredox Functions. Chem Rev. 1996 Nov 7;96(7):2315–2334. doi: 10.1021/cr950041r. [DOI] [PubMed] [Google Scholar]
  13. Frey P. A. Lysine 2,3-aminomutase: is adenosylmethionine a poor man's adenosylcobalamin? FASEB J. 1993 May;7(8):662–670. doi: 10.1096/fasebj.7.8.8500691. [DOI] [PubMed] [Google Scholar]
  14. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  15. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A., Borchert S. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997 Nov 20;390(6657):249–256. doi: 10.1038/36786. [DOI] [PubMed] [Google Scholar]
  16. Lieder K. W., Booker S., Ruzicka F. J., Beinert H., Reed G. H., Frey P. A. S-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron-sulfur centers by electron paramagnetic resonance. Biochemistry. 1998 Feb 24;37(8):2578–2585. doi: 10.1021/bi972417w. [DOI] [PubMed] [Google Scholar]
  17. Moss M. L., Frey P. A. Activation of lysine 2,3-aminomutase by S-adenosylmethionine. J Biol Chem. 1990 Oct 25;265(30):18112–18115. [PubMed] [Google Scholar]
  18. Moss M., Frey P. A. The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction. J Biol Chem. 1987 Nov 5;262(31):14859–14862. [PubMed] [Google Scholar]
  19. Ogawa H., Konishi K., Fujioka M. The peptide sequences near the bound pyridoxal phosphate are conserved in serine dehydratase from rat liver, and threonine dehydratases from yeast and Escherichia coli. Biochim Biophys Acta. 1989 Jun 13;996(1-2):139–141. doi: 10.1016/0167-4838(89)90106-4. [DOI] [PubMed] [Google Scholar]
  20. Petrovich R. M., Ruzicka F. J., Reed G. H., Frey P. A. Characterization of iron-sulfur clusters in lysine 2,3-aminomutase by electron paramagnetic resonance spectroscopy. Biochemistry. 1992 Nov 10;31(44):10774–10781. doi: 10.1021/bi00159a019. [DOI] [PubMed] [Google Scholar]
  21. Petrovich R. M., Ruzicka F. J., Reed G. H., Frey P. A. Metal cofactors of lysine-2,3-aminomutase. J Biol Chem. 1991 Apr 25;266(12):7656–7660. [PubMed] [Google Scholar]
  22. Ranson N. A., White H. E., Saibil H. R. Chaperonins. Biochem J. 1998 Jul 15;333(Pt 2):233–242. doi: 10.1042/bj3330233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reed G. H., Ballinger M. D. Characterization of a radical intermediate in the lysine 2,3-aminomutase reaction. Methods Enzymol. 1995;258:362–379. doi: 10.1016/0076-6879(95)58056-5. [DOI] [PubMed] [Google Scholar]
  24. Ruzicka F. J., Lieder K. W., Frey P. A. Lysine 2,3-aminomutase from Clostridium subterminale SB4: mass spectral characterization of cyanogen bromide-treated peptides and cloning, sequencing, and expression of the gene kamA in Escherichia coli. J Bacteriol. 2000 Jan;182(2):469–476. doi: 10.1128/jb.182.2.469-476.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WADA H., SNELL E. E. The enzymatic oxidation of pyridoxine and pyridoxamine phosphates. J Biol Chem. 1961 Jul;236:2089–2095. [PubMed] [Google Scholar]
  26. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu W., Lieder K. W., Reed G. H., Frey P. A. Observation of a second substrate radical intermediate in the reaction of lysine 2,3-aminomutase: a radical centered on the beta-carbon of the alternative substrate, 4-thia-L-lysine. Biochemistry. 1995 Aug 22;34(33):10532–10537. doi: 10.1021/bi00033a027. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES