Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 15;348(Pt 3):565–572.

Annexin II is associated with mRNAs which may constitute a distinct subpopulation.

A Vedeler 1, H Hollås 1
PMCID: PMC1221098  PMID: 10839987

Abstract

Protein-mRNA interactions affect mRNA transport, anchorage, stability and translatability in the cytoplasm. During the purification of three subpopulations of polysomes, it was observed that a 36-kDa protein, identified as annexin II, is associated with only one specific population of polysomes, namely cytoskeleton-associated polysomes. This association appears to be calcium-dependent since it was sensitive to EGTA and could be reconstituted in vitro. UV irradiation resulted in partial, EGTA-resistant cross-linking of annexin II to the polysomes. Binding of (32)P-labelled total RNA to proteins isolated from the cytoskeleton-bound polysomes on a NorthWestern blot resulted in a radioactive band having the same mobility as annexin II and, most importantly, purified native annexin II immobilized on nitrocellulose specifically binds mRNA. The mRNA population isolated from cytoskeleton-bound polysomes binds to annexin II with the highest affinity as compared with those isolated from free or membrane-bound polysomes. Interestingly, the annexin II complex, isolated from porcine small intestinal microvilli was a far better substrate for mRNA binding than the complex derived from transformed Krebs II ascites cells. When cytoskeleton-associated polysomes were split into 60 S and 40 S ribosomal subunits, and a peak containing mRNA complexes, annexin II fractionated with the mRNAs. Finally, using affinity purification of mRNA on poly(A)(+)-coupled magnetic beads, annexin II was only detected in association with messenger ribonucleoproteins (mRNPs) present in the cytoskeletal fraction (non-polysomal mRNPs). These results, derived from both in vitro experiments and cell fractionation, suggest that annexin II binds directly to the RNA moiety of mRNP complexes containing a specific population of mRNAs.

Full Text

The Full Text of this article is available as a PDF (264.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman M. R., Sabatini D. D., Blobel G. Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components. J Cell Biol. 1973 Jan;56(1):206–229. doi: 10.1083/jcb.56.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrigo A. P., Darlix J. L., Spahr P. F. A cellular protein phosphorylated by the avian sarcoma virus transforming gene product is associated with ribonucleoprotein particles. EMBO J. 1983;2(3):309–315. doi: 10.1002/j.1460-2075.1983.tb01424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker T., Weber K., Johnsson N. Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J. 1990 Dec;9(13):4207–4213. doi: 10.1002/j.1460-2075.1990.tb07868.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyko V., Mudrak O., Svetlova M., Negishi Y., Ariga H., Tomilin N. A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein. FEBS Lett. 1994 May 30;345(2-3):139–142. doi: 10.1016/0014-5793(94)00419-6. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Donnelly S. R., Moss S. E. Annexins in the secretory pathway. Cell Mol Life Sci. 1997 Jun;53(6):533–538. doi: 10.1007/s000180050068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerke V. Consensus peptide antibodies reveal a widespread occurrence of Ca2+/lipid-binding proteins of the annexin family. FEBS Lett. 1989 Dec 4;258(2):259–262. doi: 10.1016/0014-5793(89)81668-0. [DOI] [PubMed] [Google Scholar]
  9. Gerke V., Moss S. E. Annexins and membrane dynamics. Biochim Biophys Acta. 1997 Jun 27;1357(2):129–154. doi: 10.1016/s0167-4889(97)00038-4. [DOI] [PubMed] [Google Scholar]
  10. Gerke V., Weber K. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 1984 Jan;3(1):227–233. doi: 10.1002/j.1460-2075.1984.tb01789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glenney J. R., Jr, Boudreau M., Galyean R., Hunter T., Tack B. Association of the S-100-related calpactin I light chain with the NH2-terminal tail of the 36-kDa heavy chain. J Biol Chem. 1986 Aug 15;261(23):10485–10488. [PubMed] [Google Scholar]
  12. Glenney J. R., Jr Co-precipitation of intestinal p36 with a 73-K protein and a high molecular weight factor. Exp Cell Res. 1986 Jan;162(1):183–190. doi: 10.1016/0014-4827(86)90437-4. [DOI] [PubMed] [Google Scholar]
  13. Harder T., Gerke V. The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J Cell Biol. 1993 Dec;123(5):1119–1132. doi: 10.1083/jcb.123.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hazelrigg T. The destinies and destinations of RNAs. Cell. 1998 Nov 13;95(4):451–460. doi: 10.1016/s0092-8674(00)81613-x. [DOI] [PubMed] [Google Scholar]
  15. Hesketh J. E., Campbell G. P., Whitelaw P. F. c-myc mRNA in cytoskeletal-bound polysomes in fibroblasts. Biochem J. 1991 Mar 1;274(Pt 2):607–609. doi: 10.1042/bj2740607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hosoya H., Kobayashi R., Tsukita S., Matsumura F. Ca(2+)-regulated actin and phospholipid binding protein (68 kD-protein) from bovine liver: identification as a homologue for annexin VI and intracellular localization. Cell Motil Cytoskeleton. 1992;22(3):200–210. doi: 10.1002/cm.970220307. [DOI] [PubMed] [Google Scholar]
  17. Ikebuchi N. W., Waisman D. M. Calcium-dependent regulation of actin filament bundling by lipocortin-85. J Biol Chem. 1990 Feb 25;265(6):3392–3400. [PubMed] [Google Scholar]
  18. Jansen R. P. RNA-cytoskeletal associations. FASEB J. 1999 Mar;13(3):455–466. [PubMed] [Google Scholar]
  19. Johannessen A. J., Pyrme I. F., Vedeler A. Changes in distribution of actin mRNA in different polysome fractions following stimulation of MPC-11 cells. Mol Cell Biochem. 1995 Jan 26;142(2):107–115. doi: 10.1007/BF00928931. [DOI] [PubMed] [Google Scholar]
  20. Jost M., Gerke V. Mapping of a regulatory important site for protein kinase C phosphorylation in the N-terminal domain of annexin II. Biochim Biophys Acta. 1996 Oct 11;1313(3):283–289. doi: 10.1016/0167-4889(96)00101-2. [DOI] [PubMed] [Google Scholar]
  21. Kärgel H. J., Stahl J., Gross B., Knespel S., Bielka H., Saarma M. Studies on interaction of 5 S RNA with ribosomal proteins. FEBS Lett. 1987 Aug 10;220(1):126–128. doi: 10.1016/0014-5793(87)80889-x. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Ma A. S., Bell D. J., Mittal A. A., Harrison H. H. Immunocytochemical detection of extracellular annexin II in cultured human skin keratinocytes and isolation of annexin II isoforms enriched in the extracellular pool. J Cell Sci. 1994 Jul;107(Pt 7):1973–1984. doi: 10.1242/jcs.107.7.1973. [DOI] [PubMed] [Google Scholar]
  24. Matsumoto K., Wolffe A. P. Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol. 1998 Aug;8(8):318–323. doi: 10.1016/s0962-8924(98)01300-2. [DOI] [PubMed] [Google Scholar]
  25. Moss R., Pryme I. F., Vedeler A. Free, cytoskeletal-bound and membrane-bound polysomes isolated from MPC-11 and Krebs II ascites cells differ in their complement of poly(A) binding proteins. Mol Cell Biochem. 1994 Feb 23;131(2):131–139. doi: 10.1007/BF00925949. [DOI] [PubMed] [Google Scholar]
  26. Moss R., Pryme I. F., Vedeler A. The effect of insulin on proteins associated with free, cytoskeletal-bound and membrane-bound polysome populations. Cell Biol Int. 1993 Dec;17(12):1065–1073. doi: 10.1006/cbir.1993.1039. [DOI] [PubMed] [Google Scholar]
  27. Nasmyth K., Jansen R. P. The cytoskeleton in mRNA localization and cell differentiation. Curr Opin Cell Biol. 1997 Jun;9(3):396–400. doi: 10.1016/s0955-0674(97)80013-0. [DOI] [PubMed] [Google Scholar]
  28. Oleynikov Y., Singer R. H. RNA localization: different zipcodes, same postman? Trends Cell Biol. 1998 Oct;8(10):381–383. doi: 10.1016/s0962-8924(98)01348-8. [DOI] [PubMed] [Google Scholar]
  29. Pong S. S., Nuss D. L., Koch G. Inhibition of initiation of protein synthesis in mammalian tissue culture cells by L-1-tosylamido-2-phenylethyl chloromethyl ketone. J Biol Chem. 1975 Jan 10;250(1):240–245. [PubMed] [Google Scholar]
  30. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  31. Siever D. A., Erickson H. P. Extracellular annexin II. Int J Biochem Cell Biol. 1997 Nov;29(11):1219–1223. doi: 10.1016/s1357-2725(97)00057-5. [DOI] [PubMed] [Google Scholar]
  32. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  33. Takizawa P. A., Sil A., Swedlow J. R., Herskowitz I., Vale R. D. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature. 1997 Sep 4;389(6646):90–93. doi: 10.1038/38015. [DOI] [PubMed] [Google Scholar]
  34. Thiel C., Osborn M., Gerke V. The tight association of the tyrosine kinase substrate annexin II with the submembranous cytoskeleton depends on intact p11- and Ca(2+)-binding sites. J Cell Sci. 1992 Nov;103(Pt 3):733–742. doi: 10.1242/jcs.103.3.733. [DOI] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Traub U. E., Nelson W. J., Traub P. Polyacrylamide gel electrophoretic screening of mammalian cells cultured in vitro for the presence of the intermediate filament protein vimentin. J Cell Sci. 1983 Jul;62:129–147. doi: 10.1242/jcs.62.1.129. [DOI] [PubMed] [Google Scholar]
  37. Vedeler A., Pryme I. F., Hesketh J. E. Compartmentalization of polysomes into free, cytoskeletal-bound and membrane-bound populations. Biochem Soc Trans. 1991 Nov;19(4):1108–1111. doi: 10.1042/bst0191108. [DOI] [PubMed] [Google Scholar]
  38. Vedeler A., Pryme I. F., Hesketh J. E. Insulin and step-up conditions cause a redistribution of polysomes among free, cytoskeletal-bound and membrane-bound fractions in Krebs II ascites cells. Cell Biol Int Rep. 1990 Mar;14(3):211–218. doi: 10.1016/s0309-1651(05)80003-7. [DOI] [PubMed] [Google Scholar]
  39. Vedeler A., Pryme I. F., Hesketh J. E. The characterization of free, cytoskeletal and membrane-bound polysomes in Krebs II ascites and 3T3 cells. Mol Cell Biochem. 1991 Feb 2;100(2):183–193. doi: 10.1007/BF00234167. [DOI] [PubMed] [Google Scholar]
  40. Vishwanatha J. K., Chiang Y., Kumble K. D., Hollingsworth M. A., Pour P. M. Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis. 1993 Dec;14(12):2575–2579. doi: 10.1093/carcin/14.12.2575. [DOI] [PubMed] [Google Scholar]
  41. Vishwanatha J. K., Kumble S. Involvement of annexin II in DNA replication: evidence from cell-free extracts of Xenopus eggs. J Cell Sci. 1993 Jun;105(Pt 2):533–540. doi: 10.1242/jcs.105.2.533. [DOI] [PubMed] [Google Scholar]
  42. Waisman D. M. Annexin II tetramer: structure and function. Mol Cell Biochem. 1995 Aug-Sep;149-150:301–322. doi: 10.1007/BF01076592. [DOI] [PubMed] [Google Scholar]
  43. Wu X. Q., Lefrancois S., Morales C. R., Hecht N. B. Protein-protein interactions between the testis brain RNA-binding protein and the transitional endoplasmic reticulum ATPase, a cytoskeletal gamma actin and Trax in male germ cells and the brain. Biochemistry. 1999 Aug 31;38(35):11261–11270. doi: 10.1021/bi990573s. [DOI] [PubMed] [Google Scholar]
  44. Zokas L., Glenney J. R., Jr The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits. J Cell Biol. 1987 Nov;105(5):2111–2121. doi: 10.1083/jcb.105.5.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES