Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 15;348(Pt 3):585–590.

A new method for the selection of protein interactions in mammalian cells.

E Rojo-Niersbach 1, D Morley 1, S Heck 1, N Lehming 1
PMCID: PMC1221101  PMID: 10839990

Abstract

In the present study we present a new method that allows for the selection of protein interactions in mammalian cells. We have used this system to verify two interactions previously characterized in vitro. (1) The interaction between human TATA-binding protein 1 and nuclear factor kappaB and (2) the association of Homo sapiens nuclear autoantigen SP100B with human heterochromatin protein 1alpha, a protein implicated in chromatin remodelling. We observe for the first time that these interactions also occur in vivo. One protein was fused to the N-terminal half of ubiquitin, while the interacting partner was fused to the C-terminal half of ubiquitin, that was itself linked to guanine phosphoryltransferase 2 (gpt2) modified to begin with an arginine residue. Upon interaction of both proteins, ubiquitin is reconstituted, and its association with the Rgpt2 reporter is subsequently cleaved off by ubiquitin-processing enzymes. The presence of arginine in the Rgpt2 gene product leads to the degradation of the product by the N-end rule pathway. In the human fibroblast cell line HT1080HPRT(-) (that is deficient in the enzyme for hypoxanthine-guanine phosphoribosyltransferase) cells in which interaction between both proteins of interest occurs can then be selected for by hypoxanthine/aminopterin/thymine medium and counterselected against by 6-thioguanine medium. This method provides a suitable alternative to the yeast two-hybrid system and is generally applicable.

Full Text

The Full Text of this article is available as a PDF (350.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronheim A., Zandi E., Hennemann H., Elledge S. J., Karin M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol. 1997 Jun;17(6):3094–3102. doi: 10.1128/mcb.17.6.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barberis A., Pearlberg J., Simkovich N., Farrell S., Reinagel P., Bamdad C., Sigal G., Ptashne M. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell. 1995 May 5;81(3):359–368. doi: 10.1016/0092-8674(95)90389-5. [DOI] [PubMed] [Google Scholar]
  3. Byrd C., Turner G. C., Varshavsky A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 1998 Jan 2;17(1):269–277. doi: 10.1093/emboj/17.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dünnwald M., Varshavsky A., Johnsson N. Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum. Mol Biol Cell. 1999 Feb;10(2):329–344. doi: 10.1091/mbc.10.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  6. Gaudreau L., Keaveney M., Nevado J., Zaman Z., Bryant G. O., Struhl K., Ptashne M. Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2668–2673. doi: 10.1073/pnas.96.6.2668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guldner H. H., Szostecki C., Grötzinger T., Will H. IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis. J Immunol. 1992 Dec 15;149(12):4067–4073. [PubMed] [Google Scholar]
  8. Hanna-Rose W., Hansen U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 1996 Jun;12(6):229–234. doi: 10.1016/0168-9525(96)10022-6. [DOI] [PubMed] [Google Scholar]
  9. Johnsson N., Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10340–10344. doi: 10.1073/pnas.91.22.10340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kerr L. D., Ransone L. J., Wamsley P., Schmitt M. J., Boyer T. G., Zhou Q., Berk A. J., Verma I. M. Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-kappa B. Nature. 1993 Sep 30;365(6445):412–419. doi: 10.1038/365412a0. [DOI] [PubMed] [Google Scholar]
  11. Koleske A. J., Young R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem Sci. 1995 Mar;20(3):113–116. doi: 10.1016/s0968-0004(00)88977-x. [DOI] [PubMed] [Google Scholar]
  12. Kuras L., Struhl K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature. 1999 Jun 10;399(6736):609–613. doi: 10.1038/21239. [DOI] [PubMed] [Google Scholar]
  13. Lavau C., Marchio A., Fagioli M., Jansen J., Falini B., Lebon P., Grosveld F., Pandolfi P. P., Pelicci P. G., Dejean A. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene. 1995 Sep 7;11(5):871–876. [PubMed] [Google Scholar]
  14. Lehming N., Le Saux A., Schüller J., Ptashne M. Chromatin components as part of a putative transcriptional repressing complex. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7322–7326. doi: 10.1073/pnas.95.13.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li X. Y., Virbasius A., Zhu X., Green M. R. Enhancement of TBP binding by activators and general transcription factors. Nature. 1999 Jun 10;399(6736):605–609. doi: 10.1038/21232. [DOI] [PubMed] [Google Scholar]
  16. Luo Y., Batalao A., Zhou H., Zhu L. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system. Biotechniques. 1997 Feb;22(2):350–352. doi: 10.2144/97222pf02. [DOI] [PubMed] [Google Scholar]
  17. Ma J., Ptashne M. Converting a eukaryotic transcriptional inhibitor into an activator. Cell. 1988 Nov 4;55(3):443–446. doi: 10.1016/0092-8674(88)90030-x. [DOI] [PubMed] [Google Scholar]
  18. Moore P. A., Ruben S. M., Rosen C. A. Conservation of transcriptional activation functions of the NF-kappa B p50 and p65 subunits in mammalian cells and Saccharomyces cerevisiae. Mol Cell Biol. 1993 Mar;13(3):1666–1674. doi: 10.1128/mcb.13.3.1666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pellegrini S., John J., Shearer M., Kerr I. M., Stark G. R. Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol Cell Biol. 1989 Nov;9(11):4605–4612. doi: 10.1128/mcb.9.11.4605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ptashne M., Gann A. Transcriptional activation by recruitment. Nature. 1997 Apr 10;386(6625):569–577. doi: 10.1038/386569a0. [DOI] [PubMed] [Google Scholar]
  21. Ptashne M. How eukaryotic transcriptional activators work. Nature. 1988 Oct 20;335(6192):683–689. doi: 10.1038/335683a0. [DOI] [PubMed] [Google Scholar]
  22. Schmitz M. L., Stelzer G., Altmann H., Meisterernst M., Baeuerle P. A. Interaction of the COOH-terminal transactivation domain of p65 NF-kappa B with TATA-binding protein, transcription factor IIB, and coactivators. J Biol Chem. 1995 Mar 31;270(13):7219–7226. doi: 10.1074/jbc.270.13.7219. [DOI] [PubMed] [Google Scholar]
  23. Seeler J. S., Marchio A., Sitterlin D., Transy C., Dejean A. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7316–7321. doi: 10.1073/pnas.95.13.7316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stargell L. A., Struhl K. Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet. 1996 Aug;12(8):311–315. doi: 10.1016/0168-9525(96)10028-7. [DOI] [PubMed] [Google Scholar]
  25. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12142–12149. doi: 10.1073/pnas.93.22.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Varshavsky A. The ubiquitin system. Trends Biochem Sci. 1997 Oct;22(10):383–387. doi: 10.1016/s0968-0004(97)01122-5. [DOI] [PubMed] [Google Scholar]
  27. Wellhausen A., Lehming N. Analysis of the in vivo interaction between a basic repressor and an acidic activator. FEBS Lett. 1999 Jun 25;453(3):299–304. doi: 10.1016/s0014-5793(99)00718-8. [DOI] [PubMed] [Google Scholar]
  28. Wittke S., Lewke N., Müller S., Johnsson N. Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell. 1999 Aug;10(8):2519–2530. doi: 10.1091/mbc.10.8.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wu Y., Reece R. J., Ptashne M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 1996 Aug 1;15(15):3951–3963. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES