Abstract
Although metformin is widely used for the treatment of non-insulin-dependent diabetes, its mode of action remains unclear. Here we provide evidence that its primary site of action is through a direct inhibition of complex 1 of the respiratory chain. Metformin(50 microM) inhibited mitochondrial oxidation of glutamate+malate in hepatoma cells by 13 and 30% after 24 and 60 h exposure respectively, but succinate oxidation was unaffected. Metformin also caused time-dependent inhibition of complex 1 in isolated mitochondria, whereas in sub-mitochondrial particles inhibition was immediate but required very high metformin concentrations (K(0.5),79 mM). These data are compatible with the slow membrane-potential-driven accumulation of the positively charged drug within the mitochondrial matrix leading to inhibition of complex 1. Metformin inhibition of gluconeogenesis from L-lactate in isolated rat hepatocytes was also time- and concentration-dependent, and accompanied by changes in metabolite levels similar to those induced by other inhibitors of gluconeogenesis acting on complex 1. Freeze-clamped livers from metformin-treated rats exhibited similar changes in metabolite concentrations. We conclude that the drug's pharmacological effects are mediated, at least in part, through a time-dependent, self-limiting inhibition of the respiratory chain that restrains hepatic gluconeogenesis while increasing glucose utilization in peripheral tissues. Lactic acidosis, an occasional side effect, canal so be explained in this way.
Full Text
The Full Text of this article is available as a PDF (193.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argaud D., Roth H., Wiernsperger N., Leverve X. M. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem. 1993 May 1;213(3):1341–1348. doi: 10.1111/j.1432-1033.1993.tb17886.x. [DOI] [PubMed] [Google Scholar]
- Bogucka K., Wroniszewska A., Bednarek M., Duszyński J., Wojtczak L. Energetics of Ehrlich ascites mitochondria: membrane potential of isolated mitochondria and mitochondria within digitonin-permeabilized cells. Biochim Biophys Acta. 1990 Feb 22;1015(3):503–509. doi: 10.1016/0005-2728(90)90084-h. [DOI] [PubMed] [Google Scholar]
- CHAPPELL J. B. The effect of alkylguanidines on mitochondrial metabolism. J Biol Chem. 1963 Jan;238:410–417. [PubMed] [Google Scholar]
- Cook D. E., Blair J. B., Lardy H. A. Mode of action of hypoglycemic agents. V. Studies with phenethylbiguanide in isolated perfused rat liver. J Biol Chem. 1973 Aug 10;248(15):5272–5277. [PubMed] [Google Scholar]
- Davidoff F. Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition. J Biol Chem. 1971 Jun 25;246(12):4017–4027. [PubMed] [Google Scholar]
- Ebert B. L., Firth J. D., Ratcliffe P. J. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem. 1995 Dec 8;270(49):29083–29089. doi: 10.1074/jbc.270.49.29083. [DOI] [PubMed] [Google Scholar]
- El-Mir M. Y., Nogueira V., Fontaine E., Avéret N., Rigoulet M., Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000 Jan 7;275(1):223–228. doi: 10.1074/jbc.275.1.223. [DOI] [PubMed] [Google Scholar]
- Evans P. F., King L. J., Parke D. V., Margetts G., Jones W. E. The mechanism of action of phenformin in starved rats. Biochem Pharmacol. 1983 Nov 15;32(22):3459–3463. doi: 10.1016/0006-2952(83)90377-5. [DOI] [PubMed] [Google Scholar]
- Fischer Y., Thomas J., Rösen P., Kammermeier H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology. 1995 Feb;136(2):412–420. doi: 10.1210/endo.136.2.7835271. [DOI] [PubMed] [Google Scholar]
- Gan S. C., Barr J., Arieff A. I., Pearl R. G. Biguanide-associated lactic acidosis. Case report and review of the literature. Arch Intern Med. 1992 Nov;152(11):2333–2336. doi: 10.1001/archinte.152.11.2333. [DOI] [PubMed] [Google Scholar]
- Gettings S. D., Reeve J. E., King L. J. Possible role of intracellular Ca2+ in the toxicity of phenformin. Biochem Pharmacol. 1988 Jan 15;37(2):281–289. doi: 10.1016/0006-2952(88)90730-7. [DOI] [PubMed] [Google Scholar]
- Gluck M. R., Youngster S. K., Ramsay R. R., Singer T. P., Nicklas W. J. Studies on the characterization of the inhibitory mechanism of 4'-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem. 1994 Aug;63(2):655–661. doi: 10.1046/j.1471-4159.1994.63020655.x. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P., Dunlop J. L. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem J. 1986 Nov 1;239(3):559–565. doi: 10.1042/bj2390559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halestrap A. P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. doi: 10.1042/bj2440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamann A., Benecke H., Greten H., Matthaei S. Metformin increases glucose transporter protein and gene expression in human fibroblasts. Biochem Biophys Res Commun. 1993 Oct 15;196(1):382–387. doi: 10.1006/bbrc.1993.2260. [DOI] [PubMed] [Google Scholar]
- Hundal H. S., Ramlal T., Reyes R., Leiter L. A., Klip A. Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology. 1992 Sep;131(3):1165–1173. doi: 10.1210/endo.131.3.1505458. [DOI] [PubMed] [Google Scholar]
- Large V., Beylot M. Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin. Diabetes. 1999 Jun;48(6):1251–1257. doi: 10.2337/diabetes.48.6.1251. [DOI] [PubMed] [Google Scholar]
- Matthaei S., Hamann A., Klein H. H., Benecke H., Kreymann G., Flier J. S., Greten H. Association of Metformin's effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes. 1991 Jul;40(7):850–857. doi: 10.2337/diab.40.7.850. [DOI] [PubMed] [Google Scholar]
- Mörikofer-Zwez S., Walter P. Binding of ADP to rat liver cytosolic proteins and its influence on the ratio of free ATP/free ADP. Biochem J. 1989 Apr 1;259(1):117–124. doi: 10.1042/bj2590117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen M. R., Halestrap A. P. The mechanisms by which mild respiratory chain inhibitors inhibit hepatic gluconeogenesis. Biochim Biophys Acta. 1993 Apr 5;1142(1-2):11–22. doi: 10.1016/0005-2728(93)90079-u. [DOI] [PubMed] [Google Scholar]
- Perriello G., Misericordia P., Volpi E., Santucci A., Santucci C., Ferrannini E., Ventura M. M., Santeusanio F., Brunetti P., Bolli G. B. Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes. 1994 Jul;43(7):920–928. doi: 10.2337/diab.43.7.920. [DOI] [PubMed] [Google Scholar]
- Pryor H. J., Smyth J. E., Quinlan P. T., Halestrap A. P. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Biochem J. 1987 Oct 15;247(2):449–457. doi: 10.1042/bj2470449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pénicaud L., Hitier Y., Ferré P., Girard J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J. 1989 Sep 15;262(3):881–885. doi: 10.1042/bj2620881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radziuk J., Zhang Z., Wiernsperger N., Pye S. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes. 1997 Sep;46(9):1406–1413. doi: 10.2337/diab.46.9.1406. [DOI] [PubMed] [Google Scholar]
- Rouru J., Koulu M., Peltonen J., Santti E., Hänninen V., Pesonen U., Huupponen R. Effects of metformin treatment on glucose transporter proteins in subcellular fractions of skeletal muscle in (fa/fa) Zucker rats. Br J Pharmacol. 1995 Aug;115(7):1182–1187. doi: 10.1111/j.1476-5381.1995.tb15022.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäfer G. Biguanides. A review of history, pharmacodynamics and therapy. Diabete Metab. 1983 May-Jun;9(2):148–163. [PubMed] [Google Scholar]
- Titheradge M. A., Binder S. B., Yamazaki R. K., Haynes R. C., Jr Glucagon treatment stimulates the metabolism of hepatic submitochondrial particles. J Biol Chem. 1978 May 25;253(10):3357–3360. [PubMed] [Google Scholar]
- Verma S., McNeill J. H. Metformin improves cardiac function in isolated streptozotocin-diabetic rat hearts. Am J Physiol. 1994 Feb;266(2 Pt 2):H714–H719. doi: 10.1152/ajpheart.1994.266.2.H714. [DOI] [PubMed] [Google Scholar]
- Wheeler T. J., Fell R. D., Hauck M. A. Translocation of two glucose transporters in heart: effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia. Biochim Biophys Acta. 1994 Dec 30;1196(2):191–200. doi: 10.1016/0005-2736(94)00211-8. [DOI] [PubMed] [Google Scholar]
- Whipps D. E., Halestrap A. P. Rat liver mitochondria prepared in mannitol media demonstrate increased mitochondrial volumes compared with mitochondria prepared in sucrose media. Relationship to the effect of glucagon on mitochondrial function. Biochem J. 1984 Jul 1;221(1):147–152. doi: 10.1042/bj2210147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcock C., Bailey C. J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994 Jan;24(1):49–57. doi: 10.3109/00498259409043220. [DOI] [PubMed] [Google Scholar]
- Wilcock C., Bailey C. J. Sites of metformin-stimulated glucose metabolism. Biochem Pharmacol. 1990 Jun 1;39(11):1831–1834. doi: 10.1016/0006-2952(90)90136-9. [DOI] [PubMed] [Google Scholar]
- Wollen N., Bailey C. J. Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin. Biochem Pharmacol. 1988 Nov 15;37(22):4353–4358. doi: 10.1016/0006-2952(88)90617-x. [DOI] [PubMed] [Google Scholar]