Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 15;348(Pt 3):633–642.

Possible interference between tissue-non-specific alkaline phosphatase with an Arg54-->Cys substitution and acounterpart with an Asp277-->Ala substitution found in a compound heterozygote associated with severe hypophosphatasia.

M Fukushi-Irié 1, M Ito 1, Y Amaya 1, N Amizuka 1, H Ozawa 1, S Omura 1, Y Ikehara 1, K Oda 1
PMCID: PMC1221107  PMID: 10839996

Abstract

Tissue-non-specific alkaline phosphatase (TNSALP) with an Arg(54)-->Cys (R54C) or an Asp(277)-->Ala (D277A)substitution was found in a patient with hypophosphatasia [Henthorn,Raducha, Fedde, Lafferty and Whyte (1992) Proc. Natl. Acad. Sci. U.S.A.89, 9924-9928]. To examine effects of these missense mutations onproperties of TNSALP, the TNSALP mutants were expressed ectopically inCOS-1 cells. The wild-type TNSALP was synthesized as a 66-kDa endo-beta-N-acetylglucosaminidase H (Endo H)-sensitive form, and processed to an 80-kDa mature form, which is anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). Although the mutant proteins were found to be modified by GPI, digestion with phosphatidylinositol-specific phospholipase C, cell-surface biotinylation and immunofluorescence observation demonstrated that the cell-surface appearance of TNSALP (R54C) and TNSALP (D277A) was either almost totally or partially retarded respectively. The 66-kDa Endo H-sensitive band was the only form, and was rapidly degraded in the cells expressing TNSALP (R54C). In contrast with cells expressing TNSALP(R54C), where alkaline phosphatase activity was negligible, significant enzyme activity was detected and, furthermore, the 80-kDa mature form appeared on the surface of the cells expressing TNSALP (D277A). Analysis by sedimentation on sucrose gradients showed that a considerable fraction of newly synthesized TNSALP (R54C) and TNSALP(D277A) formed large aggregates, indicating improper folding and incorrect oligomerization of the mutant enzymes. When co-expressed with TNSALP (R54C), the level of the 80-kDa mature form of TNSALP (D277A)was decreased dramatically, with a concomitant reduction in enzyme activity in the co-transfected cell. These findings suggest that TNSALP(R54C) interferes with folding and assembly of TNSALP (D277A) intrans when expressed in the same cell, thus probably explaining why a compound heterozygote for these mutant alleles developed severe hypophosphatasia.

Full Text

The Full Text of this article is available as a PDF (329.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amara J. F., Cheng S. H., Smith A. E. Intracellular protein trafficking defects in human disease. Trends Cell Biol. 1992 May;2(5):145–149. doi: 10.1016/0962-8924(92)90101-r. [DOI] [PubMed] [Google Scholar]
  2. Bergeron J. J., Brenner M. B., Thomas D. Y., Williams D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. doi: 10.1016/0968-0004(94)90205-4. [DOI] [PubMed] [Google Scholar]
  3. Cai G., Michigami T., Yamamoto T., Yasui N., Satomura K., Yamagata M., Shima M., Nakajima S., Mushiake S., Okada S. Analysis of localization of mutated tissue-nonspecific alkaline phosphatase proteins associated with neonatal hypophosphatasia using green fluorescent protein chimeras. J Clin Endocrinol Metab. 1998 Nov;83(11):3936–3942. doi: 10.1210/jcem.83.11.5267. [DOI] [PubMed] [Google Scholar]
  4. Field M. C., Moran P., Li W., Keller G. A., Caras I. W. Retention and degradation of proteins containing an uncleaved glycosylphosphatidylinositol signal. J Biol Chem. 1994 Apr 8;269(14):10830–10837. [PubMed] [Google Scholar]
  5. Fukushi M., Amizuka N., Hoshi K., Ozawa H., Kumagai H., Omura S., Misumi Y., Ikehara Y., Oda K. Intracellular retention and degradation of tissue-nonspecific alkaline phosphatase with a Gly317-->Asp substitution associated with lethal hypophosphatasia. Biochem Biophys Res Commun. 1998 May 29;246(3):613–618. doi: 10.1006/bbrc.1998.8674. [DOI] [PubMed] [Google Scholar]
  6. Goseki-Sone M., Orimo H., Iimura T., Takagi Y., Watanabe H., Taketa K., Sato S., Mayanagi H., Shimada T., Oida S. Hypophosphatasia: identification of five novel missense mutations (G507A, G705A, A748G, T1155C, G1320A) in the tissue-nonspecific alkaline phosphatase gene among Japanese patients. Hum Mutat. 1998;Suppl 1:S263–S267. doi: 10.1002/humu.1380110184. [DOI] [PubMed] [Google Scholar]
  7. Greenberg C. R., Taylor C. L., Haworth J. C., Seargeant L. E., Philipps S., Triggs-Raine B., Chodirker B. N. A homoallelic Gly317-->Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian mennonites. Genomics. 1993 Jul;17(1):215–217. doi: 10.1006/geno.1993.1305. [DOI] [PubMed] [Google Scholar]
  8. Harris H. The human alkaline phosphatases: what we know and what we don't know. Clin Chim Acta. 1990 Jan 15;186(2):133–150. doi: 10.1016/0009-8981(90)90031-m. [DOI] [PubMed] [Google Scholar]
  9. Hawrylak K., Stinson R. A. The solubilization of tetrameric alkaline phosphatase from human liver and its conversion into various forms by phosphatidylinositol phospholipase C or proteolysis. J Biol Chem. 1988 Oct 5;263(28):14368–14373. [PubMed] [Google Scholar]
  10. Helenius A., Marquardt T., Braakman I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol. 1992 Aug;2(8):227–231. doi: 10.1016/0962-8924(92)90309-b. [DOI] [PubMed] [Google Scholar]
  11. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henthorn P. S., Raducha M., Fedde K. N., Lafferty M. A., Whyte M. P. Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9924–9928. doi: 10.1073/pnas.89.20.9924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ikehara Y., Mansho K., Takahashi K., Kato K. Purification and characterization of alkaline phosphatase from plasma membranes of rat ascites hepatoma. J Biochem. 1978 May;83(5):1471–1483. doi: 10.1093/oxfordjournals.jbchem.a132057. [DOI] [PubMed] [Google Scholar]
  14. Ikezawa H., Yamanegi M., Taguchi R., Miyashita T., Ohyabu T. Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus. I. purification, properties and phosphatase-releasing activity. Biochim Biophys Acta. 1976 Nov 19;450(2):154–164. [PubMed] [Google Scholar]
  15. Kishi F., Matsuura S., Kajii T. Nucleotide sequence of the human liver-type alkaline phosphatase cDNA. Nucleic Acids Res. 1989 Mar 11;17(5):2129–2129. doi: 10.1093/nar/17.5.2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Low M. G., Finean J. B. Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C. Biochem J. 1977 Oct 1;167(1):281–284. doi: 10.1042/bj1670281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miki A., Tanaka Y., Ogata S., Ikehara Y. Selective preparation and characterization of membranous and soluble forms of alkaline phosphatase from rat tissues. A comparison with the serum enzyme. Eur J Biochem. 1986 Oct 1;160(1):41–48. doi: 10.1111/j.1432-1033.1986.tb09937.x. [DOI] [PubMed] [Google Scholar]
  19. Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mornet E., Taillandier A., Peyramaure S., Kaper F., Muller F., Brenner R., Bussière P., Freisinger P., Godard J., Le Merrer M. Identification of fifteen novel mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in European patients with severe hypophosphatasia. Eur J Hum Genet. 1998 Jul-Aug;6(4):308–314. doi: 10.1038/sj.ejhg.5200190. [DOI] [PubMed] [Google Scholar]
  21. Narisawa S., Fröhlander N., Millán J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn. 1997 Mar;208(3):432–446. doi: 10.1002/(SICI)1097-0177(199703)208:3<432::AID-AJA13>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  22. Oda K., Amaya Y., Fukushi-Irié M., Kinameri Y., Ohsuye K., Kubota I., Fujimura S., Kobayashi J. A general method for rapid purification of soluble versions of glycosylphosphatidylinositol-anchored proteins expressed in insect cells: an application for human tissue-nonspecific alkaline phosphatase. J Biochem. 1999 Oct;126(4):694–699. doi: 10.1093/oxfordjournals.jbchem.a022505. [DOI] [PubMed] [Google Scholar]
  23. Oda K., Ikehara Y., Omura S. Lactacystin, an inhibitor of the proteasome, blocks the degradation of a mutant precursor of glycosylphosphatidylinositol-linked protein in a pre-Golgi compartment. Biochem Biophys Res Commun. 1996 Feb 27;219(3):800–805. doi: 10.1006/bbrc.1996.0314. [DOI] [PubMed] [Google Scholar]
  24. Oda K., Wada I., Takami N., Fujiwara T., Misumi Y., Ikehara Y. Bip/GRP78 but not calnexin associates with a precursor of glycosylphosphatidylinositol-anchored protein. Biochem J. 1996 Jun 1;316(Pt 2):623–630. doi: 10.1042/bj3160623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oida S., Sone M., Sasaki S. Purification of swine kidney alkaline phosphatase by immunoaffinity chromatography. Anal Biochem. 1984 Jul;140(1):117–120. doi: 10.1016/0003-2697(84)90141-6. [DOI] [PubMed] [Google Scholar]
  26. Okubo A., Langerman N., Kaplan M. M. Rat liver alkaline phosphatase. Purification and properties. J Biol Chem. 1974 Nov 25;249(22):7174–7180. [PubMed] [Google Scholar]
  27. Omura S., Matsuzaki K., Fujimoto T., Kosuge K., Furuya T., Fujita S., Nakagawa A. Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells. J Antibiot (Tokyo) 1991 Jan;44(1):117–118. doi: 10.7164/antibiotics.44.117. [DOI] [PubMed] [Google Scholar]
  28. Orimo H., Goseki-Sone M., Sato S., Shimada T. Detection of deletion 1154-1156 hypophosphatasia mutation using TNSALP exon amplification. Genomics. 1997 Jun 1;42(2):364–366. doi: 10.1006/geno.1997.4733. [DOI] [PubMed] [Google Scholar]
  29. Orimo H., Hayashi Z., Watanabe A., Hirayama T., Hirayama T., Shimada T. Novel missense and frameshift mutations in the tissue-nonspecific alkaline phosphatase gene in a Japanese patient with hypophosphatasia. Hum Mol Genet. 1994 Sep;3(9):1683–1684. doi: 10.1093/hmg/3.9.1683. [DOI] [PubMed] [Google Scholar]
  30. Ozono K., Yamagata M., Michigami T., Nakajima S., Sakai N., Cai G., Satomura K., Yasui N., Okada S., Nakayama M. Identification of novel missense mutations (Phe310Leu and Gly439Arg) in a neonatal case of hypophosphatasia. J Clin Endocrinol Metab. 1996 Dec;81(12):4458–4461. doi: 10.1210/jcem.81.12.8954059. [DOI] [PubMed] [Google Scholar]
  31. Shibata H., Fukushi M., Igarashi A., Misumi Y., Ikehara Y., Ohashi Y., Oda K. Defective intracellular transport of tissue-nonspecific alkaline phosphatase with an Ala162-->Thr mutation associated with lethal hypophosphatasia. J Biochem. 1998 May;123(5):968–977. doi: 10.1093/oxfordjournals.jbchem.a022032. [DOI] [PubMed] [Google Scholar]
  32. Sugimoto N., Iwamoto S., Hoshino Y., Kajii E. A novel missense mutation of the tissue-nonspecific alkaline phosphatase gene detected in a patient with hypophosphatasia. J Hum Genet. 1998;43(3):160–164. doi: 10.1007/s100380050061. [DOI] [PubMed] [Google Scholar]
  33. Thomas P. J., Qu B. H., Pedersen P. L. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995 Nov;20(11):456–459. doi: 10.1016/s0968-0004(00)89100-8. [DOI] [PubMed] [Google Scholar]
  34. Waymire K. G., Mahuren J. D., Jaje J. M., Guilarte T. R., Coburn S. P., MacGregor G. R. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet. 1995 Sep;11(1):45–51. doi: 10.1038/ng0995-45. [DOI] [PubMed] [Google Scholar]
  35. Weiss M. J., Cole D. E., Ray K., Whyte M. P., Lafferty M. A., Mulivor R. A., Harris H. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7666–7669. doi: 10.1073/pnas.85.20.7666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7182–7186. doi: 10.1073/pnas.83.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weiss M. J., Ray K., Fallon M. D., Whyte M. P., Fedde K. N., Lafferty M. A., Mulivor R. A., Harris H. Analysis of liver/bone/kidney alkaline phosphatase mRNA, DNA, and enzymatic activity in cultured skin fibroblasts from 14 unrelated patients with severe hypophosphatasia. Am J Hum Genet. 1989 May;44(5):686–694. [PMC free article] [PubMed] [Google Scholar]
  38. Whyte M. P. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994 Aug;15(4):439–461. doi: 10.1210/edrv-15-4-439. [DOI] [PubMed] [Google Scholar]
  39. Whyte M. P., Landt M., Ryan L. M., Mulivor R. A., Henthorn P. S., Fedde K. N., Mahuren J. D., Coburn S. P. Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5'-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest. 1995 Apr;95(4):1440–1445. doi: 10.1172/JCI117814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilbourn B., Nesbeth D. N., Wainwright L. J., Field M. C. Proteasome and thiol involvement in quality control of glycosylphosphatidylinositol anchor addition. Biochem J. 1998 May 15;332(Pt 1):111–118. doi: 10.1042/bj3320111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES